Facultad de Ingeniería Electrónica y Telecomunicaciones Maestría en Automática Contenidos de Asignaturas

ASIGNATURA: RECONOCIMIENTO DE OBJETOS MEDIANTE VISIÓN ARTIFICIAL

MODALIDAD: PRESENCIAL TEÓRICO-PRÁCTICA

INTENSIDAD: 2 HORAS SEMANALES

PRE-REQUISITOS: NINGUNO

CRÉDITOS: 3

PROFESOR: ELENA MUÑOZ ESPAÑA

OBJETIVO GENERAL

Analizar los conceptos, las técnicas y las herramientas fundamentales relacionadas con el ámbito de la visión artificial para la detección y el reconocimiento de objetos.

OBJETIVOS ESPECÍFICOS

- Conocer las principales técnicas usadas para el procesamiento, descripción y clasificación de una imagen.
- Desarrollar soluciones para diferentes problemas de reconocimiento de imágenes.

METODOLOGÍA

Se desarrollarán sesiones teóricas por parte del docente donde se explican los conceptos fundamentales y se realizan prácticas guiadas que permitan profundizar e implementar los algoritmos de procesamiento de imágenes en herramientas y librerías como Matlab y OpenCV. Se desarrollarán trabajos por parte del estudiante en los cuales aplique y complemente los conceptos trabajados en la asignatura.

CONTENIDO

- 1. Introducción al procesamiento digital de imágenes (8 horas)
 - 1.1 Adquisición de la imagen
 - 1.2 Representación de la imagen digital
 - 1.3 Técnicas de preprocesado de imágenes
 - 1.4 Técnicas de segmentación de imágenes
 - 1.5 Procesamiento morfológico de las imágenes
- 2. Extracción de características locales invariantes (16 horas)
 - 2.1 Bordes, esquinas (Harris), color, contornos
 - 2.2 Blob analysis, Templete matching
 - 2.3 SIFT (Scale Invariant Feature Transform)
 - 2.4 SURF (Speeded Up Robust Features)

Facultad de Ingeniería Electrónica y Telecomunicaciones Maestría en Automática Contenidos de Asignaturas

- 2.5 HOG (Histogram of Oriented Gradients)
- 2.6 LBP (Local Binary Pattern)
- 2.7 Coincidencia de características. RANSAC (RANdom SAmple Consensus)
- 3. Detección y reconocimiento de objetos (8 horas)
 - 3.1 El reconocimiento de objetos como un problema de clasificación
 - 3.2 Técnicas de aprendizaje supervisado y no supervisado
 - 3.3 Support Vector Machine (SVM)
 - 3.4 K-Means

ACTIVIDADES ACADÉMICAS A DESARROLLAR

Actividad presencial		Actividad extra clase		Total	Créditos
Horas Teóricas	Horas Prácticas	Horas Teóricas	Horas Prácticas	Horas	Creditos
19 HORAS	13 HORAS	44	68	144	3

EVALUACIÓN Y PORCENTAJES

Número	%	Componentes	
1	30%	Trabajo 1: Práctica de segmentación, descripción y reconocimiento de objetos a partir de características básicas en entornos controlados.	
2	30%	Trabajo 2: Revisión de la literatura en el campo del seguimiento, detección o clasificación de objetos.	
3	40%	Trabajo 3: Proyecto de aplicación de reconocimiento de objetos en entornos no controlados	

RECURSOS HARDWARE Y SOFTWARE

Computadores con el software de simulación Matlab / Simulink, C++ (OpenCv)

BIBLIOGRAFÍA

- J. Ponce and D. Forsyth. Computer Vision a Modern Approach. Pearson, 2012, vol. 2.
- R. C. Gonzalez, R. E. Woods. Digital Image Processing: (4th Edition). Pearson, 2017
- A. De la Escalera. Visión por computador: fundamentos y métodos. Prentice Hall, 2001
- R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010