

UNIVERSIDAD DEL CAUCA FACULTAD DE INGENIERIA ELECTRÓNICA Y TELECOMUNICACIONES PROGRAMA DE INGENIERIA DE SISTEMAS

ASIGNATURA: LABORATORIO DE INTRODUCCIÓN A LA INFORMATICA

CODIGO: SIS0102 / SIS102L MODALIDAD: PRESENCIAL PRÁCTICA

INTENSIDAD: 2 HORAS PRACTICA / SEMANA.

CO-REQUISITOS: INTRODUCCIÓN A LA INFORMATICA

CIENCIAS BASICAS DE INGENIERIA

CREDITOS: 1

OBJETIVO GENERAL

Aplicar los conceptos vistos en la materia de Introducción a la Informática mediante prácticas dirigidas y con la ayuda de herramientas de software adecuadas.

OBJETIVOS ESPECIFICOS

El estudiante al final del curso estará en capacidad de:

- 1. Resolver problemas haciendo uso de una herramienta de programación
- 2. Crear programas de computador y codificarlos en un compilador específico.
- 3. Utilizar un ambiente de desarrollo para crear, compilar, depurar y ejecutar programas.
- 4. Generar soluciones computacionales a problemas específicos a través de la implementación de un programa en un lenguaje de programación de alto nivel.
- 5. Optimizar el uso de herramientas software para crear programas de computador.

METODOLOGIA

El proceso de aprendizaje estará centrado en la utilización de diferentes metodologías que buscarán crear un ambiente de Aprendizaje Activo donde el estudiante es el propio protagonista de su aprendizaje y el profesor será quía, tutor y orientador del proceso.

El docente revisará cada sesión que el estudiante traiga las actividades propuestas para el trabajo en el laboratorio.

Por lo tanto el estudiante debe:

- 1. Estudiar en profundidad cada uno de los temas vistos en la asignatura de Introducción a la Informática que este cursando.
- 2. Realizar satisfactoriamente la práctica indicada en el laboratorio, de tal forma que sus dudas queden resueltas.
- 3. Realizar prácticas e investigaciones complementarias que se asignen como refuerzo a los temas vistos en el laboratorio.
- 4. El estudiante debe llevar los ejercicios desarrollados en pseudocódigo, diagrama de flujo o diagrama Nassi-Schneiderman, siguiendo la metodología de solución de problemas usando el computador (Análisis, Diseño y prueba de escritorio en los formatos no establecidos).

CONTENIDO

PRACTICA	TEMA	HORAS
1	Introducción a la informática	2
2	Notación y representación de algoritmos (Codificación).	2
	Utilización del software (DFD)	
3	Editores de Texto/IDEs y compiladores, estructura general de	2
	un programa (Codificación, entrada, salida, estándares de	

	programación), algoritmos y programas secuenciales	
4	Estructuras Condicionales	2
5	Estructuras Condicionales Anidadas	2
6	Estructuras Repetitivas (Para, mientras, repetir hasta)	2
7	Estructuras Repetitivas Anidadas	2
8	Arreglos unidimensionales y cadenas	2
9	Arreglos multidimensionales	2
10	Estructuras (Registros)	2
11	Punteros	2
12	Arreglos y punteros	2
13	Funciones	2
14	Aplicaciones	2
	TOTAL	28

EVALUACIONES

Se realizarán tres (3) evaluaciones de la siguiente forma:

Corte	%	Componentes	
		Descripción	%
Primer	35%	Laboratorios, tareas, quices, parcial escrito.	100%
Segundo	35%	Laboratorios, tareas, quices, parcial escrito.	100%
Tercero	30%	Laboratorios, tareas y	70%
		trabajo final	30%

OBSERVACIONES

- Para cada laboratorio es necesario traer las plantillas de análisis y diseño de algoritmos desarrollados y planteados en la asignatura de Introducción a la Informática. El listado de ejercicios para cada práctica se podrá consultar en la web de la asignatura.
- Los laboratorios y tareas en grupo serán evaluados individualmente y deben estar debidamente documentados. Todo laboratorio o tareas NO sustentados pierden validez. Las sustentaciones serán programadas con anterioridad definiendo fecha y hora para cada alumno.
- Cada estudiante deberá traer al laboratorio dos disquetes en perfecto estado.

BIBLIOGRAFÍA

- Chris H. Pappas, C/C++ programmers guide.
 Herbert Schildt, C++: guía de autoenseñanza.
- Sergio Vildosola Martínez, Fundamentos de programación.
- Herbert Schildt, Programación en turbo c.
- Luis Joyanes Aguilar, Metodología de la programación: Diagramas de flujo, algorítmos y programación estructurada.
- Carlo Ghezzi, Conceptos de Lenguajes de Programación.
- Donald H. Sanders, Informática: Presente y futuro.
- Les Hancock, Introducción al lenguaje c.
- Kris Jamás, Lenguaje C Biblioteca de Funciones.
- Luis Joyanes Aguilar, Fundamentos de programación: Algoritmos y estructuras de datos.
- José Luis Mora, Enzo Molino, Introducción a la informática.

Adicional

- Cairó, Osvaldo. Metodología de la programación. Alfaomega.
- Allen B. Tucker, y otros. Fundamentos de Informática. McGraw Hill.
- Luis Joyanes Aguilar. Metodología de la Programación. McGraw-Hill.
- Cesar Becerra. Lenguaje C.