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In this paper we analyse a mixed finite-element method and boundary-element method coupling for a
time-dependent eddy current problem posed in the whole space and formulated in terms of the electric
field E. The coupled problem is obtained by first proposing a mixed formulation of the interior problem
in order to handle efficiently the divergence-free constraint satisfied byE in a dielectric material. Next we
incorporate the far-field effect in the latter formulation through boundary integral equations defined on the
coupling interface. We show that the resulting degenerate parabolic problem (with saddle point structure)
is well-posed and use Ńed́elec edge elements and standard nodal finite elements to define a semidiscrete
Galerkin scheme. Furthermore, we introduce the corresponding backward Euler fully discrete formula-
tion and analyse the asymptotic behaviour of the error in terms of the discretization parameters for both
schemes.

Keywords: eddy current problem; saddle point problems; mixed finite elements; Néd́elec finite elements;
boundary elements.

1. Introduction

The eddy current problem is naturally formulated in the whole space with decay conditions on the
fields at infinity (see, for instance,Ammari et al., 2000). Consequently, to apply conventional numer-
ical methods, such as the finite-element method (FEM), it is necessary to reduce the problem to a
bounded domain. The most common approach consists in restricting the equations to a sufficiently large
computational domain containing the region of interest and imposing an artificial homogeneous boun-
dary condition on its border (which must be ‘sufficiently’ far away from the conductor). This strategy
yields the difficulty of fixing a convenient cut-off distancea priori. Moreover, in the case of conductors
with a ‘special’ shape or a very large computational domain, a finite-element mesh can lead to a very
large number of elements. On the other hand, methods based on boundary integral equations, like the
boundary-element method (BEM), in general cannot be directly applied because the equations are not
homogeneous and have variable coefficients.
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Sincethe equations of the eddy current problem are complex techniques combining BEM and
FEM look convenient only in a bounded region. The first FEM–BEM couplings for the eddy current
model were proposed by engineers:Bossavit & V́erité (1982,1983) (using the magnetic fieldH in the
conductor and the Steklov–Poincaré operator) andMayergoyzet al. (1983) (using the electric fieldE
in the conductor and certain harmonic basis functions near its boundaryΣ). From a mathematical point
of view more recent results based on the well-known symmetric method byCostabel(1988) are due to
Hiptmair (2002) (usingE in the conductor andH × n onΣ) andMeddahi & Selgas(2003) (usingH
in the conductor and the normal trace of the magnetic induction onΣ) for the time-harmonic problem.
Another FEM–BEM approach for the same problem in terms of vector and scalar potentials has also
been recently analysed byAlonso Rodŕıguez & Valli (2009).

When the conductor is multiply connected the approach mentioned above requires the construction
of cumbersome (and expensive) cutting surfaces in order to deal correctly with the discrete problem (see
alsoBermudezet al.,2002). Recently,Alonso Rodŕıguezet al. (2004) showed that the time-harmonic
H-based formulation of the eddy current problem (posed in a bounded domain) admits a saddle point
structure that is free from the above restriction (see alsoMeddahi & Selgas,2008, for a similar strategy
applied to the case of a time-dependent eddy current problem posed in the whole space). Such a formu-
lation is obtained by solving the problem in a boxΩ completely containing the conductorΩc andby
introducing a Lagrange multiplier associated to thecurl-free constraint satisfied by the magnetic field
in the insulating regionΩd := Ω \Ωc surroundingthe conductor. We adopt here the same point of view
for the problem under consideration.

Actually our goal is to introduce a new method to solve the time-dependent eddy current problem,
based on a mixed FEM and BEM coupling. We use as main variable a time primitive ofE in Ω (see
also Bossavit,1999). The divergence free condition in the insulating material is handled through a
Lagrange multiplier, which gives rise to a saddle point formulation in the interior domain. The integral
representation of the electric field in the complementary unbounded domain provides nonlocal boundary
conditions for the interior mixed formulation. This approach extends our previous work (Acevedoet al.,
2009), where the eddy current problem is assumed to be posed in a bounded domain.

A feature of our formulation is that the compact support of the current density is not necessar-
ily assumed to be completely contained in the conductor or in its exterior. Furthermore, we choose
Ω simply connected with a connected boundary in order to be able to introduce a certain scalar po-
tential as a boundary variable and use standard nodal finite elements to approximate it. On the other
hand, in contrast to the formulation given inMeddahi & Selgas(2008), our approach fits well into
the theory of monotone operators because the reluctivity (the inverse of the magnetic permeability)
appears as a diffusion coefficient in the degenerate parabolic problem at hand. Consequently, this ap-
proach seems convenient when the relation between the magnetic field and the magnetic induction
(given by the reluctivity) depends on the magnetic induction intensity, which is typical for ferromagnetic
materials.

We perform a space discretization of our weak formulation by using Néd́elec edge elements for the
main unknown and standard finite elements for the Lagrange multiplier and the boundary variable. We
show that our semidiscrete Galerkin scheme is uniquely solvable and provides error estimates in terms
of the space discretization parameterh. We also propose a fully discrete Galerkin scheme based on a
backward Euler time stepping. Here again, we provide error estimates that prove optimal convergence.
Moreover, we obtain error estimates for the eddy currents and the magnetic induction field.

The paper is organized as follows. In Section2 we summarize some results fromBuffa (2001),
Buffa & Ciarlet (2001) andBuffa et al. (2002) concerning tangential differential operators and traces in
H(curl; Ω). In Section3 we introduce the model problem. We derive a symmetric mixed FEM and BEM
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coupling of our problem in Section4 and prove that it is uniquely solvable in Section5. The construction
of a semidiscretization in space and the analysis of its convergence are reported in Section6. Finally, a
backward Euler method is employed to obtain a time discretization of the problem. The results presented
in Section7 prove that the resulting fully discrete scheme is convergent with optimal order.

2. Preliminaries

We use boldface letters to denote vectors as well as vector-valued functions and the symbol|∙| represents
the standard Euclidean norm for vectors. In this sectionΩ is a generic bounded Lipschitz domain ofR3.
We denote byΓ its boundary and byn the unit outward normal toΩ. Let

( f, g)0,Ω :=
∫

Ω
f g

be the inner product in L2(Ω) and‖∙‖0,Ω thecorresponding norm. As usual, for alls> 0,‖∙‖s,Ω stands
for the norm of the Hilbertian Sobolev space Hs(Ω) and |∙|s,Ω for the corresponding seminorm. The
space H1/2(Γ ) is defined by localization on the Lipschitz surfaceΓ . We denote by‖∙‖1/2,Γ thenorm
in H1/2(Γ ) and〈∙, ∙〉1/2,Γ standsfor the duality pairing between H1/2(Γ ) and its dual H−1/2(Γ ). From
now on we denote byγ : H1(Ω) → H1/2(Γ ) andγγγ : H1(Ω)3 → H1/2(Γ )3 thestandard trace operator
acting on scalar and vector fields, respectively.

2.1 Tangential differential operators and traces

We consider the space

L2
τ (Γ ) := {λλλ ∈ L2(Γ )3 : λλλ ∙ n = 0},

endowed with the standard norm in L2(Γ )3. We define the tangential traceγγγ τ : C∞(Ω)3 → L2
τ (Γ )

and the tangential component traceπππτ : C∞(Ω)3 → L2
τ (Γ ) asγγγ τv := γγγ v×n andπππτv := n×(γγγ v×n),

respectively. The previous traces can be extended by completeness to H1(Ω)3. The spacesH1/2
⊥ (Γ ) :=

γγγ τ (H
1(Ω)3) andH1/2

‖ (Γ ) := πππτ (H1(Ω)3) are,respectively, endowed with the Hilbert norms

‖ηηη‖
H1/2

⊥ (Γ )
:= inf

w∈H1(Ω)3
{‖w‖1,Ω : γγγ τw = ηηη},

‖ηηη‖
H1/2

‖ (Γ )
:= inf

w∈H1(Ω)3
{‖w‖1,Ω : πππτw = ηηη}.

Let us note that the density of H1/2(Γ )3 in L2(Γ )3 ensuresthatH1/2
⊥ (Γ ) andH1/2

‖ (Γ ) are dense sub-

spaces ofL2
τ (Γ ). We denote byH−1/2

⊥ (Γ ) andH−1/2
‖ (Γ ) the dual spaces ofH1/2

⊥ (Γ ) andH1/2
‖ (Γ ) with

L2
τ (Γ ) as pivot space, with duality pairing〈∙, ∙〉⊥,Γ and〈∙, ∙〉‖,Γ , respectively.

We introduce the tangential differential operators

gradΓ ϕ := πππτ (gradϕ) and curlΓ ϕ := γγγ τ (gradϕ) ∀ϕ ∈ H2(Ω).

Let H3/2(Γ ) := γ (H2(Ω)). It is well known that the previous operators depend only on the traceγ (ϕ)
onΓ , which implies that

gradΓ : H3/2(Γ ) → H1/2
‖ (Γ ) and curlΓ : H3/2(Γ ) → H1/2

⊥ (Γ ) (2.1)
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arelinear and continuous (cf.Buffa et al., 2002, proposition 3.4). Let H−3/2(Γ ) be the dual space of
H3/2(Γ ) with L2(Γ ) as pivot space. We define

divΓ : H−1/2
‖ (Γ ) → H−3/2(Γ ) and curlΓ : H−1/2

⊥ (Γ ) → H−3/2(Γ ) (2.2)

by the dualities

〈divΓ ηηη, φ〉3/2,Γ = −
〈
ηηη, gradΓ φ

〉
‖,Γ ∀φ ∈ H3/2(Γ ) ∀ ηηη ∈ H−1/2

‖ (Γ ),

〈curlΓ ξξξ, φ〉3/2,Γ = 〈ξξξ, curlΓ φ〉⊥,Γ ∀φ ∈ H3/2(Γ ) ∀ ξξξ ∈ H−1/2
⊥ (Γ ).

(2.3)

The following proposition is proved inBuffa et al. (2002, proposition 3.6).

PROPOSITION2.1 The operatorsgradΓ andcurlΓ given in (2.1) can be extended to H1/2(Γ ). More-
over,gradΓ : H1/2(Γ ) → H−1/2

⊥ (Γ ) andcurlΓ : H1/2(Γ ) → H−1/2
‖ (Γ ) are linear and continuous.

Analogously the transpose operators introduced in (2.2) are also continuous for the following choice
of spaces: divΓ : H1/2

⊥ (Γ ) → H−1/2(Γ ) and curlΓ : H1/2
‖ (Γ ) → H−1/2(Γ ). Furthermore, analogous

identities to (2.3) still hold for anyφ ∈ H1/2(Γ ), ηηη ∈ H1/2
⊥ (Γ ) andξξξ ∈ H1/2

‖ (Γ ). More precisely, we
have

〈divΓ ηηη, φ〉1/2,Γ = −
〈
gradΓ φ, ηηη

〉
⊥,Γ ∀φ ∈ H1/2(Γ ) ∀ ηηη ∈ H1/2

⊥ (Γ ),

〈curlΓ ξξξ, φ〉1/2,Γ = 〈curlΓ φ, ξξξ 〉‖,Γ ∀φ ∈ H1/2(Γ ) ∀ ξξξ ∈ H1/2
‖ (Γ ).

Let

H(curl; Ω) := {v ∈ L2(Ω)3 : curl v ∈ L2(Ω)3},

endowed with the norm

‖v‖H(curl;Ω) := (‖v‖2
0,Ω + ‖curl v‖2

0,Ω)
1/2. (2.4)

Usingthe Green formula (see, for instance,Buffa & Ciarlet, 2001, for the case of Lipschitz polyhedra
andBuffa et al.,2002, for arbitrary Lipschitz domains)

(u, curl v)0,Ω − (curl u, v)0,Ω =
〈
γγγ τu, πππτv

〉
‖,Γ = −

〈
πππτv,γγγ τu

〉
⊥,Γ ∀ u, v ∈ C∞(Ω)3

andthe density ofC∞(Ω)3 in H(curl; Ω) (see, for instance,Monk, 2003, theorem 3.26) and in H1(Ω),
it follows that

γγγ τ : H(curl; Ω) → H−1/2
‖ (Γ ), πππτ : H(curl; Ω) → H−1/2

⊥ (Γ )

are continuous. The spaceH0(curl; Ω) stands for the kernel ofγγγ τ in H(curl; Ω). The ranges ofγγγ τ and
πππτ arecharacterized in the following result.

THEOREM 2.1 Let

H−1/2 (divΓ ;Γ ) := {λλλ ∈ H−1/2
‖ (Γ ) : divΓ λλλ ∈ H−1/2(Γ )}

and

H−1/2 (curlΓ ;Γ ) := {λλλ ∈ H−1/2
⊥ (Γ ) : curlΓ λλλ ∈ H−1/2(Γ )}.
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Then

γγγ τ : H(curl; Ω) → H−1/2 (divΓ ;Γ ) , πππτ : H(curl; Ω) → H−1/2 (curlΓ ;Γ )

aresurjective and possess continuous right inverses.
The spacesH−1/2 (divΓ ;Γ ) andH−1/2 (curlΓ ;Γ ) aredual to each other, whenL2

τ (Γ ) is used as
pivot space, i.e., the usualL2

τ (Γ )-inner product can be extended to a duality pairing〈∙, ∙〉τ,Γ between
H−1/2 (divΓ ;Γ ) andH−1/2 (curlΓ ;Γ ). Moreover, the following integration by parts formula holds:

(u, curl v)0,Ω − (curl u, v)0,Ω = 〈γγγ τu, πππτv〉τ,Γ ∀ u, v ∈ H(curl; Ω). (2.5)

Proof. See Theorem 4.1 and Lemma 5.6 ofBuffa et al. (2002). �
LetΩ be a Lipschitz polyhedron. The following theorem gives a characterization of the space

H−1/2 (divΓ 0;Γ ) := {ηηη ∈ H−1/2 (divΓ ;Γ ) : divΓ ηηη = 0}.

THEOREM 2.2 Let O be a regular bounded open connected and simply connected subset ofR3, such
thatΩ ⊂ O. We setΩext := O \Ω. LetH1 andH2 bethe spaces of the so-called harmonic Neumann
fields associated toΩ andΩext, respectively, i.e.,

H1 := {v ∈ H(curl; Ω) ∩ H(div;Ω) : curl v = 0,div v = 0,v ∙ n|Γ = 0},

H2 := {v ∈ H(curl; Ωext) ∩ H(div;Ωext) : curl v = 0,div v = 0,v ∙ n|∂Ωext = 0}.

Let ηηη ∈ H−1/2 (divΓ ;Γ ). Then divΓ ηηη = 0 if and only if there existsλ ∈ H1/2(Γ ), v1 ∈ H1 and
v2 ∈ H2 suchthat

ηηη = curlΓ λ+ πππτv1 + πππτv2|Γ .

Proof. SeeBuffa (2001, Section 3). �
If Ω is simply connected, it is well known thatH1 = H2 = {0} (see, for instance,Amroucheet al.,

1998, subsection 3.3). Therefore, the previous theorem implies that

H−1/2 (divΓ 0;Γ ) = curlΓ (H1/2(Γ )).

Furthermore, ifΓ is connected then ker(curlΓ ) ∩ H1/2(Γ ) = R (cf. Buffa et al.,2002, Corollary 3.7).
Consequently, the next result follows immediately from Proposition2.1.

COROLLARY 2.1 Let

H1/2
0 (Γ ) :=

{
η ∈ H1/2(Γ ) :

∫

Γ
η = 0

}
.

If Ω is simply connected andΓ is connected then the operator

curlΓ : H1/2
0 (Γ ) → H−1/2 (divΓ 0;Γ )

is an isomorphism.
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We will also use the normal traceγn : C∞(Ω)3 → L2(Γ ) given byq 7→ γγγq∙n. It is well known that
this operator can be extended to a continuous and surjective mapping (see, for instance,Monk, 2003,
theorem 3.24)

γn : H(div;Ω) → H−1/2(Γ ),

where

H(div;Ω) := {q ∈ L2(Ω)3 : div q ∈ L2(Ω)}

is endowed with the norm‖v‖H(div;Ω) := (‖v‖2
0,Ω+‖div v‖2

0,Ω)
1/2. We denote byH0(div,Ω) the kernel

of γn in H(div;Ω).

2.2 Basic spaces for time-dependent problems

Since we will deal with a time-domain problem, besides the Sobolev spaces defined above, we need to
introduce spaces of functions defined on a bounded time interval(0,T) and with values in a separa-
ble Hilbert spaceV , whose norm is denoted here by‖∙‖V . We use the notationC0([0, T ]; V) for the
Banach space consisting of all continuous functionsf : [0, T ] → V . More generally, for anyk ∈ N,
Ck([0, T ]; V) denotesthe subspace ofC0([0, T ]; V) of all functions f with (strong) derivatives of
order at mostk in C0([0, T ]; V), i.e.,

Ck([0, T ]; V) :=
{

f ∈ C0([0, T ]; V) :
d j f

dt j
∈ C0([0, T ]; V), 16 j 6 k

}
.

We also consider the space L2(0,T; V) of classes of functionsf : (0,T) → V that are Bochner
measurable and such that

‖ f ‖2
L2(0,T;V) :=

∫ T

0
‖ f (t)‖2

V dt < +∞.

Furthermore,we will use the space

H1(0,T; V) :=
{

f ∈ L2(0,T; V) :
d

dt
f ∈ L2(0,T; V)

}
,

where d
dt f is the (generalized) time derivative off (see, for instance,Zeidler,1990, section 23.5). In

what follows we will use indistinctly the notations

d

dt
f = ∂t f

to express the time derivative off . Analogously we define Hk(0,T; V) for all k ∈ N.

3. The model problem

We assume that the conductor is represented by a connected and bounded polyhedronΩc ⊂ R3 with
a Lipschitz boundaryΣ . We denote byΣi , i = 0, . . . , I , the connected components ofΣ and assume
thatΣ0 is the boundary of the unbounded component ofR3 \ Ωc. The unit normal vectorn onΣ is
pointed outwards.
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Given a time-dependent compactly supported current densityJ, our aim is to find an electric field
E(x, t) and a magnetic fieldH(x, t) satisfying the following equations:

∂t (μH)+ curl E = 0 in R3 × (0,T), (3.1)

curl H = J + σE in R3 × [0, T), (3.2)

div(εE) = 0 in (R3 \Ωc)× [0, T), (3.3)
∫

Σi

εE ∙ n = 0 in [0, T), i = 0, . . . , I , (3.4)

H(x, 0)= H0(x) in R3, (3.5)

H(x, t) = O

(
1

|x|

)
and E(x, t) = O

(
1

|x|

)
as |x| → ∞, (3.6)

where the asymptotic behaviour (3.6) holds uniformly in [0, T ]. The electric permittivityε, the electric
conductivityσ and the magnetic permeabilityμ are piecewise smooth real-valued functions satisfying

ε(x) = ε0 a.e. in R3 \Ωc,

σ1 > σ(x) > σ0 > 0 a.e. in Ωc and σ(x) = 0 a.e. in R3 \Ωc,

μ1 > μ(x) > μ0 > 0 a.e. in Ωc and μ(x) = μ0 a.e. in R3 \Ωc.

LetΩ ⊂ R3 bea connected and simply connected polyhedron with a connected boundaryΓ := ∂Ω
and suchthatΩc ∪ suppJ ⊂ Ω. We introduceΩd := Ω \Ωc andΩ ′ := R3 \Ω. We also denote byn
the outward normal unit vector onΓ . It is important to note that sinceσ = 0 inΩd, (3.2) implies thatJ
must satisfy the compatibility conditions

div J = 0 inΩd and 〈γn(J|Ωd), 1〉1/2,Σi = 0, i = 0, . . . , I , (3.7)

for all t ∈ (0,T).
For reasons that will be clear later (see Remark5.1) we need to consider a modified electric field.

To this end let us denote byΩ i
d, i = 0, . . . , I , the connected components ofΩd with ∂Ω i

d = Σi ,
i = 1, . . . , I , and∂Ω0

d = Γ ∪Σ0. See Fig.1 for a simple representation of our geometrical setting. We
introduce the function

F :=






0 in Ωc ∪Ω1
d ∪ ∙ ∙ ∙ ∪Ω I

d ,

ψ in Ω0
d,

ψext in Ω ′,

whereψ ∈ H1(Ω0
d) is the unique harmonic function satisfyingγn (gradψ) = γnE onΓ andγ(ψ) = 0

onΣ0 andψext is the unique harmonic function from

W1(Ω ′) :=
{
ϕ ∈ D′(Ω ′);

ϕ
√

1 + |x|
∈ L2(Ω ′), gradϕ ∈ L2(Ω ′)3

}
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FIG. 1. The geometrical setting.

satisfying the boundary conditionγψext = γψ on Γ . It turns out that the shifted electric fieldE∗ :=
E − grad F and the magnetic fieldH solve the following equations:

∂t (μH)+ curl E∗ = 0 in Ω × (0,T),

curl H = J + σE∗ in Ω × [0, T),

div(ε0E∗) = 0 in Ωd × [0, T),
∫

Σi

ε0E∗ ∙ n = 0 in [0,T), i = 0, . . . , I ,

γ−
n (E

∗) = 0 on Γ × [0, T),

γγγ−
τ (E

∗) = γγγ+
τ (E

∗) on Γ × [0, T),

γγγ−
τ (H) = γγγ+

τ (H) on Γ × [0, T),

∂t (μ0H)+ curl E∗ = 0 in Ω ′ × (0,T),

curl H = 0 in Ω ′ × [0, T),

div(ε0E∗) = 0 in Ω ′ × [0, T),

H(x, 0) = H0(x) in R3,

H(x, t) = O(1/|x|) and E∗(x, t) = O(1/|x|) as |x| → ∞.

(3.8)

It is important to note that the change of variable leaves the electric field unchanged in the conductor
sinceE∗ = E inΩc. In the equations aboveγγγ+

τ refers to the tangential trace onΓ taken fromΩ ′ andγγγ−
τ

to the tangential trace taken fromΩ. We adopt the same convention for any other kind of trace operator.
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In order to obtain a suitable variational formulation for the previous problem we proceed as in
Acevedoet al. (2009, section 3) and introduce the variableu(x, t) :=

∫ t
0 E∗(x, s)ds. Next we integrate

the first equation of (3.8) with respect tot to obtain the expressionH = −μ−1 curl u + H0 of the
magnetic field in terms ofu. This leads us to the following formulation of the problem:

Findu : R3 × [0, T ] → R3 suchthat

σ∂tu + curl μ−1 curl u = f in Ω × (0,T),

div u = 0 in Ωd × [0, T),
∫

Σi

ε0u ∙ n = 0 in [0, T), i = 0, . . . , I ,

u(x, 0) = 0 in R3,

γ−
n (u) = 0 on Γ × [0, T),

πππ+
τ u = πππ−

τ u on Γ × [0, T),

γγγ−
τ (μ

−1
0 curl u) = γγγ+

τ (μ
−1
0 curl u) on Γ × [0, T),

curl curl u = 0 in Ω ′ × [0, T),

div u = 0 in Ω ′ × [0, T),

u(x, t) = O(1/|x|) as |x| → ∞,

curl u(x, t) = O(1/|x|) as |x| → ∞,

(3.9)

where

f := curl H0 − J. (3.10)

We assume that bothJ andcurl H0 belongto L2(0,T; L2(Ω)). Hence, the right-hand sidef also be-
longs to the same space. Moreover, we deduce from (3.7) and (3.10) thatf inherits fromJ the same
compatibility conditions, i.e.,

div f = 0 in Ωd and 〈γn(f |Ωd), 1〉1/2,Σi = 0, i = 0, . . . , I , (3.11)

for all t ∈ (0,T). Let us also remark that equation (3.2) provides at the initial timet = 0 the relation

curl H0 = J(x, 0)+ σ(x)E(x, 0) in R3. (3.12)

It then follows from our hypotheses onJ andσ that the support off is compact and contained inΩ.

REMARK 3.1 Note that the new variableu is a vector potential ofμ(H − H0) in Ω, i.e.,

μ(H − H0) = − curl u in Ω × [0, T).

Moreover, asE∗ = E − grad F andE∗ = ∂tu wehave thatE = ∂tu + grad F andour formulation may
be viewed as the(A,V − A) formulation presented inBı́ró & Preis(1989) andBı́ró & Valli (2007) with
a vector potentialA := u and a scalar potentialV := F that vanishes inΩc. Here we only maintain the
variableu and use (as seen in (3.9)) the gauge conditions

div u = 0 inΩd × [0, T);
∫

Σi

ε0u ∙ n = 0, i = 0, . . . , I ; γ−
n (u) = 0 onΓ × [0, T),

in order to guarantee the uniqueness (cf. Theorem5.1).
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10of 31 R. ACEVEDO AND S. MEDDAHI

4. The variational formulation

4.1 A mixed formulation inΩ

We introduce the space

M(Ωd) :=

{

q ∈ H1(Ωd) :
∫

Ω i
d

q = 0,andγq|Σi = Ci , i = 0, . . . , I

}

.

It is well known that|∙|1,Ωd is a norm inM(Ωd) equivalent to the H1(Ωd)-norm.Let us consider now
the kernel

V(Ω) := {v ∈ H(curl; Ω) : b(v,q) = 0∀q ∈ M(Ωd)} (4.1)

of the bilinear form

b(v,q) := (εv,grad q)0,Ωd
.

Taking into account thatε is constant inR3 \Ωc it straightforward to obtain the following characteriza-
tion of V(Ω).

LEMMA 4.1 There holds

V(Ω) ={v ∈ H(curl; Ω) : div v = 0 inΩd; γnv = 0 onΓ ; 〈γnv,1〉1/2,Σi = 0, i = 0, . . . , I }.

Let H(curl; Ωc)
′ bethe dual space ofH(curl; Ωc) with respect to the pivot space

L2(Ωc, σ )
3 :=

{
v : Ωc → R3 Lebesguemeasurable :

∫

Ωc

σ |v|2 < ∞
}
.

We define

W0 := {v ∈ L2(0,T; V(Ω)) : v|Ωc ∈ W1(0,T; H(curl; Ωc))}

with

W1(0,T; H(curl; Ωc)) := {v ∈ L2(0,T; H(curl; Ωc)) : ∂tv ∈ L2(0,T; H(curl; Ωc)
′)}.

We also introduce

W := {v ∈ L2(0,T; H(curl; Ω)) : v|Ωc ∈ W1(0,T; H(curl; Ωc))}.

NotethatW endowed with the graph norm

‖v‖2
W :=

∫ T

0
‖v(t)‖2

H(curl;Ω) dt +
∫ T

0
‖∂tv(t)‖2

H(curl;Ωc)′
dt

is a Hilbert space and thatW0 is a closed subspace ofW .
We test the first equation of (3.9) withv ∈ V(Ω) and use the Green formula (2.5) to obtain the

following variational formulation:
Findu ∈ W0 suchthat

d

dt
(σu(t), v)0,Ωc + (μ−1 curl u(t), curl v)0,Ω − 〈γγγ τ (μ

−1
0 curl u(t)), πππτv〉τ,Γ = (f (t), v)0,Ω
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for all v ∈ V(Ω). Next we introduce a Lagrange multiplierp(t) to relax the divergence-free restriction
(implicit in the definition ofV(Ω)) and end up with the following mixed variational formulation:

Findu ∈ W and p ∈ L2(0,T; M(Ωd)) suchthat

d

dt
[(σ u(t), v)0,Ωc + b(v, p(t))] + (μ−1 curl u, curl v)0,Ω

−〈γγγ−
τ (μ

−1
0 curl u(t)), πππτv〉τ,Γ = (f (t), v)0,Ω,

b(u(t),q) = 0,

u|Ωc(0)= 0

(4.2)

for all v ∈ H(curl; Ω) and for allq ∈ M(Ωd). Finally, testingcurl curl u = 0 with grad r , r ∈ H1(Ω ′),
andapplying again (2.5) we deduce that

divΓ [γγγ+
τ (μ

−1
0 curl u)] = 0.

Consequently, Corollary2.1shows that there exists a uniqueλ(t) ∈ H1/2
0 (Γ ) such that

γγγ−
τ (μ

−1 curl u(t)) = curlΓ λ(t) onΓ for a.e.t ∈ (0,T). (4.3)

With the last identity at hand and denoting

(v,w)σ := (σv,w)0,Ωc ∀ v,w ∈ L2(Ωc, σ )
3, (4.4)

wecan rewrite (4.2) as follows:
Findu ∈ W and p ∈ L2(0,T; M(Ωd)) suchthat

d

dt
[(u(t), v)σ + b(v, p(t))] + (μ−1 curl u, curl v)0,Ω − 〈curlΓ λ, πππτv〉τ,Γ = (f (t), v)0,Ω,

b(u(t),q) = 0,

u|Ωc(0)= 0

(4.5)

for all v ∈ H(curl; Ω) and for allq ∈ M(Ωd).

4.2 Nonlocalboundary conditions onΓ

We deduce from the last four equations of (3.9) thatu admits the following integral representation (see,
for instance,Hiptmair,2002, section5):

u(x)= curlx

∫

Γ
E(x, y)n × πππ+

τ u dSy −
∫

Γ
E(x, y)γγγ+

τ (curl u)dSy

− gradx

∫

Γ
E(x, y)γ+

n u dSy (4.6)

for anyx ∈ Ω ′. HereE is the fundamental solution of the Laplace equation inR3, i.e.,

E(x, y) :=
1

4π|x − y|
, x, y ∈ R3, x 6= y.
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12of 31 R. ACEVEDO AND S. MEDDAHI

We will make repeated use of the integral operators formally defined below, for smooth densities
φ : Γ → R andηηη : Γ → R3:

Sφ(x) := γ

(
x 7→

∫

Γ
E(x, y)φ(y)dSy

)
,

Vηηη(x) := πππτ

(
x 7→

∫

Γ
E(x, y)ηηη(y)dSy

)
,

Kηηη(x) := γγγ+
τ

(
x 7→ curlx

∫

Γ
E(x, y)ηηη(y)dSy

)
,

K∗ηηη(x) := πππ+
τ

(
x 7→ curlx

∫

Γ
E(x, y)n × ηηη(y)dSy

)
− ηηη(x),

Wηηη(x) := γγγ+
τ

[
x 7→ curlx

(
curlx

∫

Γ
E(x, y)n × ηηη(y)dSy

)]
.

In the following theorem we summarize some fundamental tools concerning the properties of these
integral operators when mapping between Sobolev spaces.

THEOREM 4.1 The linear mappings

S : H−1/2(Γ ) → H1/2(Γ ), V : H−1/2
‖ (Γ ) →H1/2

‖ (Γ ), K : H−1/2 (divΓ ;Γ ) → H−1/2 (divΓ ;Γ ) ,

K∗ : H−1/2 (curlΓ ;Γ ) → H−1/2 (curlΓ ;Γ ) , W : H−1/2 (curlΓ ;Γ ) → H−1/2 (divΓ ;Γ )

arebounded and satisfy the following properties:

• There existα1 > 0 andα2 > 0 such that

〈φ, Sφ〉1/2,Γ > α1‖φ‖2
−1/2,Γ ∀φ ∈ H−1/2(Γ ) (4.7)

and

〈ηηη,Vηηη〉τ,Γ > α2‖ηηη‖
2
H−1/2(divΓ ;Γ ) ∀ ηηη ∈ H−1/2 (divΓ 0;Γ ) . (4.8)

• TheoperatorW is related toS through the following identity:

〈Wλλλ, ηηη〉τ,Γ = −〈curlΓ ηηη, S(curlΓ λλλ)〉1/2,Γ ∀ λλλ, ηηη ∈ H−1/2 (curlΓ ;Γ ) . (4.9)

• TheoperatorK∗ is the transpose ofK, i.e.,

〈Kηηη, ξξξ 〉τ,Γ = 〈ηηη,K∗ξξξ 〉τ,Γ ∀ ηηη ∈ H−1/2 (divΓ 0;Γ ) ∀ ξξξ ∈ H−1/2 (curlΓ ;Γ ) . (4.10)

Proof. See theorems 6.1, 6.2 and 6.3 ofHiptmair (2002). �
Finally, we will need the following result proved in lemma 2.3 ofMcCamy & Stephan(1984).
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LEMMA 4.2 Forηηη ∈ H−1/2 (divΓ ;Γ ) wehave that

div

(
x 7→

∫

Γ
E(x, y)ηηη(y)dSy

)
=
∫

Γ
E(x, y)divΓ ηηη(y)dSy in L2(R3).

A coupled FEM–BEM formulation of (3.9) is obtained by relating the mixed formulation (4.5)
of the interior problem with (4.6) through the transmission conditions onΓ . We begin by applying
γγγ+
τ ◦ μ−1

0 curl to (4.6) and using (4.3) to obtain

curlΓ λ = μ−1
0 Wπππ+

τ u − K (curlΓ λ) . (4.11)

Next we take the tangential traceπππ+
τ of both sides of (4.6) to derive

πππ+
τ u = πππ+

τ

(
x 7→ curlx

∫

Γ
E(x, y)n × πππ+

τ u dSy

)
− Vγγγ+

τ (curl u)− gradΓ Sγ+
n u

or equivalently

K∗(μ−1
0 πππ+

τ u)− V(curlΓ λ)− μ−1
0 gradΓ Sγ+

n u = 0.

Testing the previous equation withcurlΓ η, η ∈ H1/2
0 (Γ ) yields

−〈curlΓ η,V(curlΓ λ)〉τ,Γ + μ−1
0 〈K(curlΓ η), πππτu〉τ,Γ = 0 ∀ η ∈ H1/2

0 (Γ ).

Combining the last identity with (4.5) and (4.11) we obtain a symmetric mixed FEM and BEM coupling
for our problem:

Findu ∈ W , p ∈ L2(0,T; M(Ωd)) andλ ∈ L2(0,T; H1/2
0 (Γ )) such that

d

dt
[(u(t), v)σ + b(v, p(t))] + (μ−1 curl u, curl v)0,Ω

+μ−1
0 〈S(curlΓ πππτu), curlΓ πππτv〉1/2,Γ + 〈K curlΓ λ(t), πππτv〉τ,Γ = (f (t), v)0,Ω,

−〈curlΓ η,V(curlΓ λ)〉τ,Γ + μ−1
0 〈K(curlΓ η), πππτu〉τ,Γ = 0,

b(u(t),q) = 0,

u|Ωc(0)= 0

(4.12)

for all v ∈ H(curl; Ω), η ∈ H1/2
0 (Γ ) andq ∈ M(Ωd).

In the following for the theoretical analysis it will be convenient to eliminate the boundary variable
λ from the previous formulation. To this end we introduce the operatorR : H−1/2(Γ ) → H1/2

0 (Γ )
characterized by

〈curlΓ χ,V(curlΓ Rξ)〉τ,Γ = 〈ξ, χ〉1/2,Γ ∀χ ∈ H1/2
0 (Γ ) ∀ ξ ∈ H−1/2(Γ ). (4.13)

It is straightforward to deduce from Corollary2.1, Theorem4.1 and the Lax–Milgram lemma thatR
is well defined and bounded. Furthermore, the second equation of (4.12) may be equivalently written
λ = μ−1

0 R(curlΓ K∗πππτu). Consequently, (4.12) admits the following equivalent reduced form:
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14of 31 R. ACEVEDO AND S. MEDDAHI

Findu ∈ W , p ∈ L2(0,T; M(Ωd)) suchthat

d

dt
[(u(t), v)σ + b(v, p(t))] + (μ−1 curl u, curl v)0,Ω + c(u, v)= (f (t), v)0,Ω ∀ v ∈ H(curl; Ω),

b(u(t),q) = 0 ∀ q ∈ M(Ωd),

u|Ωc(0)= 0,
(4.14)

wherec(∙, ∙) : H(curl; Ω) × H(curl; Ω) → R is the bounded, symmetric and non-negative bilinear
form given by

c(u, v) := μ−1
0 〈(curlΓ ScurlΓ + K curlΓ RcurlΓ K∗)πππτu, πππτv〉τ,Γ ∀ u, v ∈ H(curl; Ω). (4.15)

5. Existence and uniqueness

From now on we assume thatΩd satisfiesthe following topological assumption, which is necessary
to prove Lemma5.1 below: there exists a set{ω j , j = 1, . . . , J} of admissible cuts ofΩd suchthat
∪J

j =1∂ω j ⊂ Σ andany connected component of

Ω0
d := Ωd \ (∪J

j =1ω j )

is simply connected. This assumption is satisfied for any geometry in practice.
We introduce the space

V(Ωd) := {v ∈ H(curl; Ωd) : γγγ τv = 0 onΣ; b(v,q) = 0 ∀ q ∈ M(Ωd)}.

Notethat asε(x) = ε0 for all x ∈ Ωd,

V(Ωd) = {v ∈ H(curl; Ωd) : div v = 0 inΩd, γγγ τv = 0 onΣ, γnv = 0 onΓ, 〈γnv,1〉1/2,Σi = 0,

i = 0, . . . , I }.

REMARK 5.1 Let us clarify here that the shifted electric fieldE∗ hasbeen introduced in order to obtain
a variableu with a vanishing normal component onΓ . This boundary condition plays a central role in
the proof of the following lemma that may be found inFernandes & Gilardi(1997).

LEMMA 5.1 The embedding ofV(Ωd) into L2(Ωd)
3 is compact andv 7→ ‖curl v‖0,Ωd is a norm on

V(Ωd) equivalent to theH(curl; Ωd)-norm.

With the aid of the last result the proofs of the next two lemmas are similar to the corresponding
ones from section 4 ofAcevedoet al. (2009).

LEMMA 5.2 The linear mappingE : H(curl; Ωc) → V(Ω) characterized, for anyvc ∈ H(curl; Ωc),
by (Evc) |Ωc = vc and

μ−1
0 (curl Evc, curl w)0,Ωd + c(Evc,w)= 0 ∀ w ∈ V(Ωd), (5.1)

with c(∙, ∙) given by (4.15) is well defined and bounded.
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LEMMA 5.3 The inner product inV(Ω)

(u, v)V(Ω) := (u, v)σ + (μ−1 curl u, curl v)0,Ω + c(u, v) (5.2)

inducesa norm‖∙‖V(Ω) that is equivalent to theH(curl; Ω) norm in V(Ω). Moreover, the following
decomposition is orthogonal with respect to the inner product(∙, ∙)V(Ω):

V(Ω) = Ṽ(Ωd)⊕ E(H(curl; Ωc)), (5.3)

whereṼ(Ωd) is the subspace ofV(Ω) obtained by extending zero the functions ofV(Ωd) to the whole
domainΩ.

THEOREM 5.1 Problem (4.14) has a unique solution(u, p) and

max
t∈[0,T ]

‖u(t)‖2
0,Ωc

+
∫ T

0
‖u(t)‖2

H(curl;Ω) dt 6 C
∫ T

0
‖f (t)‖2

0,Ω dt (5.4)

for some constantC > 0. Moreover, if we defineλ = μ−1
0 R(curlΓ K∗πππτu) then(u, λ, p) is the unique

solution of problem (4.12).

Proof. The second equation of (4.14) means thatu ∈ W0. Hence, we can apply the orthogonal de-

composition (5.3) to write thatu = ud + Euc, with ud ∈ L2(0,T; Ṽ(Ωd)) andEuc ∈ E(W1(0,T;
H(curl; Ωc))). It is easy to show that the first componentud(t) of this decomposition solves the elliptic
problem

μ−1
0 (curl ud(t), curl v)0,Ωd

+ c(ud(t), v)= (f (t), v)0,Ωd
∀ v ∈ V(Ωd), (5.5)

for a.e.t . On the other hand,uc satisfiesthe parabolic equation

d

dt
(uc(t), v)σ + (μ−1 curl Euc(t), curl Ev)0,Ω

+ c(Euc(t),Ev)= (f (t),Ev)0,Ω ∀ v ∈ H(curl; Ωc), (5.6)

with the initial conditionuc(0) = 0. Now using thatc(∙, ∙) is non-negative (see (4.15)) we can proceed
exactly as inAcevedoet al. (2009, Theorem 4.4) to prove the existence and uniqueness ofuc andud.

Notethat, for anyq ∈ M(Ωd), the extension by zero ofgrad q to the wholeΩ belongs toH(curl; Ω).
Hence, we deduce that the bilinear formb(∙, ∙) satisfies the inf–sup condition

sup
z∈H(curl;Ω)

b(z,q)
‖z‖H(curl;Ω)

>
b(grad q,q)

‖ grad q‖H(curl;Ω)
= ε0|q|1,Ωd ∀q ∈ M(Ωd) (5.7)

anda similar reasoning to the one presented inAcevedoet al. (2009, Theorem 4.4) proves that there
exists a uniquep(t) ∈ M(Ωd) satisfying

b(v, p(t)) = 〈G(t), v〉 ∀v ∈ H(curl; Ω) (5.8)

for all t ∈ [0, T ], whereG ∈ C0([0, T ], H(curl; Ω)′) is given by

〈G(t), v〉 := − (u(t), v)σ −
∫ t

0
(μ−1 curl u(s), curl v)0,Ω ds−

∫ t

0
c(u(s), v)ds+

∫ t

0
(f (s), v)0,Ω ds.
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We conclude that(u, p) solves (4.14) by differentiating the last identity with respect tot in the sense of
distributions.

The last assertion of the theorem follows directly from the definition ofR. �

LEMMA 5.4 The Lagrange multiplierp of problem (4.12) vanishes identically.

Proof. Testing the first equation of (4.12) withgrad q yields

d

dt
b(grad q, p(t))+ 〈K curlΓ λ(t), gradΓ q〉τ,Γ = (f (t), grad q)0,Ωd

= 0,

where the last equality follows from the compatibility conditions (3.7). Moreover, as divΓ γγγ τq =
curl q ∙ n in H−1/2(Γ ) for all q ∈ H(curl,Ω ′) wehave that

divΓ (K curlΓ λ) := divΓ γγγ
+
τ

(
x 7→ curlx

∫

Γ
E(x, y)curlΓ λ(y)dSy

)

= curl
(

curlx

∫

Γ
E(x, y)curlΓ λ(y)dSy

)
∙ n.

Usingthe propertycurl curl = −ΔΔΔ+ grad div together with Lemma4.2and the fact thatx 7→ E(x, y)
solves the Laplace equation inΩ ′ leadus to the identity

curl
(

curlx

∫

Γ
E(x, y)curlΓ λ(y)dSy

)
= grad

(∫

Γ
E(x, y)divΓ curlΓ λ(y)dSy

)
= 0 in Ω ′,

or equivalently,

divΓ (K curlΓ λ) = 0. (5.9)

Thismeans thatddt b(grad q, p(t)) = 0 for all q ∈ M(Ωd). Next takingt = 0 in (5.8) and using the fact
thatG(0)= 0 we deduce thatt 7→ b(grad q, p(t)) vanishes identically in [0,T ] for all q ∈ M(Ωd). In
particularε0|p(t)|21,Ωd

= b(grad p(t), p(t)) = 0 for all t ∈ [0, T ], and the result follows. �

REMARK 5.2 As a consequence of (3.10) and (3.12),f (x, 0) := curl H0 − J(x, 0) = 0 in Ωd. Hence,
solving (5.5) att = 0 shows thatud(x, 0)= 0 in Ωd andthen the global initial condition

u(x, 0)= 0 in Ω

holds true.

THEOREM 5.2 If (u, λ, p) is the solution of problem (4.12) then

γγγ τ (μ
−1
0 curl u) = curlΓ λ in H−1/2 (divΓ ;Γ ) . (5.10)

Proof. Testing the first equation of (4.12) withv ∈ C∞
0 (Ωd) andusing the previous lemma we obtain

curl(μ−1 curl u)|Ωd = f |Ωd.

Testing again the first equation of (4.12) with a functionv that belongs to the space

HΣ(curl; Ωd) := {v ∈ H(curl; Ωd); γγγ τv = 0 onΣ}

 by guest on F
ebruary 17, 2011

im
ajna.oxfordjournals.org

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


A MIXED FEM AND BEM COUPLING FOR AN EDDY CURRENT PROBLEM 17of 31

we obtain

γγγ τ (μ
−1
0 curl u) = μ−1

0 Wπππτu − K curlΓ λ in H−1/2 (divΓ ;Γ ) . (5.11)

Owing to (5.9) and (4.9) we deduce that

divΓ (γγγ τ (μ
−1
0 curl u)) = 0. (5.12)

Thesecond equation of (4.12) implies thatV(curlΓ λ)−μ
−1
0 K∗πππτu ∈ H−1/2 (curlΓ ;Γ )∩ker(curlΓ ).

Thenthere existsϕ ∈ H1/2(Γ ) such that (cf. Theorem 5.1 ofBuffa et al.,2002)

V(curlΓ λ)− μ−1
0 K∗πππτu = gradΓ ϕ.

According to the definition ofK∗ thisequation may be written

πππτu = πππτ

(
x 7→ curlx

∫

Γ
E(x, y)n × πππτu(y)dSy

)
− μ0V(curlΓ λ)+ μ0 gradΓ ϕ. (5.13)

Let us now consider the unique harmonic functionψ ∈ W1(Ω ′) satisfyingthe boundary condition
ψ = ϕ onΓ , and letz : Ω ′ → R3 begiven by

z(x) := curlx

∫

Γ
E(x, y)n × πππτu(y)dSy − μ0

∫

Γ
E(x, y)curlΓ λ(y)dSy + μ0 gradψ. (5.14)

We deduce from (5.13) and (5.11) that

πππτz = πππτu and μ−1
0 γγγ τ curl z = μ−1

0 γγγ τ curl u. (5.15)

Moreover, (5.9) together with Lemma4.2 show that divz = 0 in Ω ′ and curl curl z = (−ΔΔΔ +
grad div)z = 0 in Ω ′. Consequently, taking into account thatz satisfies adequate asymptotic condi-
tions at infinity this function is also given by the following integral representation:

z(x) = curlx

∫

Γ
E(x, y)n × πππτu(y)dSy −

∫

Γ
E(x, y)γγγ τ (curl u(y))dSy + gradx

∫

Γ
E(x, y)γnzdSy.

Applying πππτ to both sides of the previous equation yields

πππτz = πππτ

(
x 7→ curlx

∫

Γ
E(x, y)n × πππτu(y)dSy

)
− Vγγγ τ (curl u)+ gradΓ S(γnz).

Next subtracting the last identity from (5.13) and using (5.15) provides

V(μ0 curlΓ λ− γγγ τ (curl u)) = gradΓ (μ0ϕ − S(γnz)).

Finally, taking the duality product of this equation withμ0 curlΓ λ − γγγ τ (curl u) ∈ H−1/2 (divΓ 0;Γ )
(cf. (5.12)) and using (4.7), gives

α2‖μ0 curlΓ λ− γγγ τ (curl u)‖2
H−1/2(divΓ ;Γ )

6 〈μ0 curlΓ λ− γγγ τ (curl u),V(μ0 curlΓ λ− γγγ τ (curl u))〉τ,Γ

= 〈μ0 curlΓ λ− γγγ τ (curl u), gradΓ (μ0ϕ − Sγnz)〉τ,Γ = 0

andthe result follows. �
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6. Analysis of the semidiscrete scheme

6.1 Well posedness

Let {Th}h bea regular family of tetrahedral meshes onΩ such that each elementK ∈ Th is contained
eitherinΩc or inΩd. As usual,h stands for the largest diameter of the tetrahedraK in Th. Furthermore,
we denote by{Th(Σ)}h and{Th(Γ )}h the families of triangulations induced by{Th}h onΣ andΓ ,
respectively. We assume that{Th(Σ)}h is quasi-uniform. From now onC denotes a positive constant
independent ofh and that may take different values at different occurrences.

We define a semidiscrete version of (4.12) by means of Néd́elec finite elements. The local representa-
tion of themth-order element of this family on a tetrahedronK is given byNm(K ) := P3

m−1⊕Sm, where
Pm is the set of polynomials of degree not greater thanm andSm := {p ∈ P̃3

m : x ∙ p(x) = 0}, with
P̃m beingthe set of homogeneous polynomials of degreem. The corresponding global spaceXh(Ω)
to approximateH(curl; Ω) is the space of functions that are locally inNm(K ) andhave continuous
tangential components across the faces of the triangulationTh:

Xh(Ω) := {v ∈ H(curl; Ω) : v|K ∈ Nm(K ) ∀K ∈ T } .

On the other hand, we use standardmth-order Lagrange finite elements to approximateM(Ωd) and
H1/2

0 (Γ ):

Mh(Ωd) :=

{

q ∈ H1(Ωd) : q|K ∈ Pm ∀K ∈ Th,

∫

Ω i
d

q = 0,q|Σi = Ci , i = 0, . . . , I

}

and

Λh(Γ ) := {ϑ ∈ H1/2
0 (Γ ) : ϑ |F ∈ Pm ∀F ∈ Th(Γ )}.

We are now ready to introduce a semidiscretization of problem (4.12):
Finduh(t) : [0, T ] → Xh(Ω), λh(t) : [0, T ] → Λh(Γ ) and ph(t) : [0, T ] → Mh(Ωd) suchthat

d

dt
[(uh(t), v)σ + b(v, ph(t))] + (μ−1 curl uh, curl v)0,Ω

+μ−1
0 〈S(curlΓ πππτuh), curlΓ πππτv〉1/2,Γ + 〈K curlΓ λh(t), πππτv〉τ,Γ = (f (t), v)0,Ω,

−〈curlΓ η,V(curlΓ λh)〉τ,Γ + μ−1
0 〈K(curlΓ η), πππτuh〉τ,Γ = 0,

b(uh(t),q) = 0,

uh|Ωc(0)= 0

(6.1)

for all v ∈ Xh(Ω), η ∈ Λh(Γ ) andq ∈ Mh(Ωd).

REMARK 6.1 For piecewise smooth functions the boundary integral operators in (6.1) are structurally
equal to those for second-order elliptic problems. The terms involving the operatorS andV are im-
mediately written in terms of integrals. The same happens with the terms involvingK. In fact, for any
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η ∈ Λh(Γ ) andv ∈ Xh(Ω), we have (Hiptmair,2002)

〈K curlΓ η, πππτv〉τ,Γ =
∫

Γ

∫

Γ
curlΓ η(y) ∙ πππτv(x)

∂E(x, y)
∂n(x)

dSy dSx

+
∫

Γ

∫

Γ
gradx E(x, y)(curlΓ η(y) ∙ n(x)) ∙ πππτv(x)dSy dSx

−
1

2

∫

Γ
curlΓ η(x) ∙ πππτv(x)dSx.

We proceed as in the continuous case to prove existence and uniqueness for (6.1). Indeed, letRh :
H−1/2(Γ ) → Λh(Γ ) be the operator characterized by

〈curlΓ χ,V(curlΓ Rhξ)〉τ,Γ = 〈ξ, χ〉1/2,Γ ∀χ ∈ Λh(Γ ) ∀ ξ ∈ H−1/2(Γ ). (6.2)

Note that (6.2) is a Galerkin discretization of the elliptic problem (4.13). Consequently, using Coro-
llary 2.1, we have the following Ćea estimate:

‖Rξ − Rhξ‖1/2,Γ 6 C inf
η∈Λh(Γ )

‖Rξ − η‖1/2,Γ ∀ ξ ∈ H−1/2(Γ ). (6.3)

Here again using thatλh = μ−1
0 Rh(curlΓ K∗πππτuh) we deduce the following equivalent formulation of

(6.1):
Finduh : [0, T ] → Xh(Ω) and ph : [0, T ] → Mh(Ωd) suchthat

d

dt
[(uh(t), v)σ + b(v, ph(t))] + (μ−1 curl uh, curl v)0,Ω + ch(uh, v)= (f (t), v)0,Ω ∀ v ∈ Xh(Ω),

b(uh(t),q) = 0 ∀ q ∈ Mh(Ωd), (6.4)

uh|Ωc(0)= 0,

wherech(∙, ∙) : Xh(Ω) × Xh(Ω) → R is the uniformly bounded and non-negative bilinear form given
by

ch(u, v) := μ−1
0 〈(curlΓ ScurlΓ + K curlΓ RhcurlΓ K∗)πππτu, πππτv〉τ,Γ ∀ u, v ∈ Xh(Ω).

Note that the discrete kernel

Vh(Ω) := {v ∈ Xh(Ω) : b(v,q) = 0 ∀ q ∈ Mh(Ωd)}

of the bilinear formb is not a subspace ofV(Ω). Let us also introduce the space

Vh(Ωd) := {v|Ωd : v ∈ Vh(Ω)} ∩ HΣ(curl; Ωd).

Thefollowing result is a variation of proposition 4.6 fromAmroucheet al. (1998).

PROPOSITION 6.1 On the spaceVh(Ωd) the seminormw 7→ ‖curl w‖0,Ωd is equivalent to the usual
norm inH(curl; Ωd).
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Proof. Let ϕϕϕh bean arbitrary function fromVh(Ωd). We consider the unique solutionp ∈ M(Ωd) of
∫

Ωd

grad p ∙ grad q =
∫

Ωd

ϕϕϕh ∙ grad q ∀ q ∈ M(Ωd).

Notethatv := ϕϕϕh − grad p ∈ V(Ωd). It is well known that the spacesH0(curl; Ωd) ∩ H(div;Ωd) and
H(curl; Ωd)∩H0(div;Ωd) arecontinuously embedded in H1/2+δ(Ωd)

3, for someδ > 0 (seeAmrouche
et al., 1998, Proposition 3.7). Letψ ∈ C∞

0 (Ω) be such that 06 ψ 6 1 andψ ≡ 1 in Ωc. Note that
v = ψv + (1 − ψ)v for anyv ∈ V(Ωd) with

ψv ∈ H0(curl; Ωd) ∩ H(div;Ωd) and (1 − ψ)v ∈ H(curl; Ωd) ∩ H0(div;Ωd).

Hence,v ∈ H1/2+δ(Ωd)
3 andthere existsC1 > 0 (depending only onΩd andψ) such that

‖v‖1/2+δ,Ωd 6 C1‖v‖H(curl;Ωd). (6.5)

Moreover, ascurl v = curl ϕϕϕh in Ωd, the Ńed́elec interpolantIhv of v is well defined (cf.Amrouche
et al.,1998, Lemma 4.7). Actually there existsC2 > 0 independent ofv andh such that (cf.Amrouche
et al.,1998, Proposition 4.6)

‖Ihv‖0,Ωd 6 C2(h‖curl ϕϕϕh‖0,Ωd + ‖v‖1/2+δ,Ωd). (6.6)

Now following the strategy given inGirault & Raviart(1986, Chapter III, Proposition 5.10) we are
able to build aph ∈ Mh(Ωd) suchthatIh(grad p) = grad ph. Thus,ϕϕϕh = grad ph + Ihv and

∫

Ωd

|ϕϕϕh|2 =
∫

Ωd

ϕϕϕh ∙ (grad ph + Ihv)=
∫

Ωd

ϕϕϕh ∙ Ihv.

Thenthe Cauchy–Schwarz inequality, (6.6) and (6.5) yield

‖ϕϕϕh‖0,Ωd 6 ‖Ihv‖0,Ωd 6 C2(h‖curl ϕϕϕh‖0,Ωd + C1‖v‖H(curl;Ωd)). (6.7)

Finally, using Lemma5.1and the fact thatcurl v = curl ϕϕϕh show that there existsC > 0 indepen-
dent ofh such that

‖ϕϕϕh‖0,Ωd 6 C‖curl ϕϕϕh‖0,Ωd

andthe result follows. �
From now on the proof of the well posedness of (6.1) runs parallel to the one given in the continuous

case. First of all using Proposition6.1and the fact that{Th(Σ)}h is quasi-uniform, one can obtain the
following technical tool (cf. Lemmas 5.3 and 5.4 ofAcevedoet al.,2009, for more details).

LEMMA 6.1 The linear mappingEh : Xh(Ωc) → Vh(Ω) characterized by(Ehvc) |Ωc = vc and

μ−1
0 (curl Ehvc, curl w)0,Ωd

+ ch(Ehvc,w)= 0 ∀ w ∈ Vh(Ωd) ∀ vc ∈ Xh(Ωc) (6.8)

is well defined and bounded uniformly inh. Furthermore, the inner product

(u, v)Vh(Ω) := (u, v)σ + (μ−1 curl u, curl v)0,Ωd + ch(u, v) (6.9)

inducesin Vh(Ω) a norm‖∙‖Vh(Ω) that is equivalent to theH(curl; Ω)-norm in Vh(Ω). Moreover, the

decompositionV(Ω) = Ṽh(Ωd) ⊕ Eh(H(curl; Ωc)) is orthogonal with respect to the inner product

(∙, ∙)Vh(Ω), where Ṽh(Ωd) is the subspace ofVh(Ω) obtained by extending by zero the functions of
Vh(Ωd) to the whole domainΩ.
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THEOREM6.1 Problem (6.4) has a unique solution(uh, ph). Moreover, ifλh := μ−1
0 Rh(curlΓ K∗πππτuh)

then(uh, λh, ph) is the unique solution of problem (6.1).

Proof. The orthogonal decomposition provided by the last lemma permits one to split the principal
variableuh into two components. Each component is easily shown to be the unique solution of the
problem obtained by restricting (6.4) to the corresponding subspace ofVh(Ω) to obtain the semidiscrete
versions of (5.5) and (5.6). See the proof of Theorem 5.5 ofAcevedoet al. (2009) for more details.

The existence and uniqueness of the Lagrange multiplierph is also obtained as in the aforementioned
paper. It is a direct consequence of the discrete inf–sup condition

sup
z∈Xh,Σ (Ωd)

b(z,q)
‖z‖H(curl;Ωd)

> ε0
(grad q, grad q)0,Ωd

‖ grad q‖H(curl;Ωd)
= ε0|q|1,Ωd ∀ q ∈ Mh(Ωd) (6.10)

thatfollows immediately from the fact thatgrad(Mh(Ωd)) ⊂ Xh,Σ(Ωd). �

6.2 Error estimates

Consider the linear projection operatorΠh : H(curl; Ω) → Vh(Ω) defined by

Πhv ∈ Vh(Ω) : (Πhv,z)H(curl;Ω) = (v,z)H(curl;Ω) ∀ z ∈ Vh(Ω). (6.11)

We deduce easily from (6.10) the following Ćea estimate (cf.Girault & Raviart, 1986, Chapter II,
Theorem 1.1):

‖v −Πhv‖H(curl;Ω) 6 inf
z∈Xh(Ω)

‖v − z‖H(curl;Ω) ∀ v ∈ V(Ω). (6.12)

We introduce the notations

a(v,w) := (μ−1 curl v,curl w)0,Ω, ρρρh(t) := u(t)−Πhu(t), δδδh(t) := Πhu(t)− uh(t)

and

βh(w) := ‖(R − Rh)curlΓ K∗πππτw‖1/2,Γ . (6.13)

Notethat as a consequence of Proposition6.1and Lemma6.1we have that

‖v‖H(curl;Ω) = ‖v − Eh(v|Ωc)+ Eh(v|Ωc)‖H(curl;Ω) 6 C(‖v‖0,Ωc + ‖curl v‖0,Ω) (6.14)

for all v ∈ Vh(Ω). In particular

‖δδδh(t)‖H(curl;Ω) 6 C(‖δδδh(t)‖0,Ωc + ‖curl δδδh(t)‖0,Ω) ∀ t ∈ [0, T ]. (6.15)

Fromnow on‖∙‖σ denotesthe norm in L2(Ωc, σ )
3 correspondingto the the inner product(∙, ∙)σ defined

in (4.4).

LEMMA 6.2 Assume that the solutionu of (4.12) belongs to H1(0,T; H(curl; Ω)) then there exists a
constantC > 0 such that

sup
t∈[0,T ]

‖δδδh(t)‖
2
H(curl;Ω) +

∫ T

0
‖∂tδδδh(s)‖

2
σ ds

6 C

[∫ T

0
‖∂tρρρh(t)‖

2
H(curl;Ω)dt + sup

t∈[0,T ]
‖curl ρρρh(t)‖

2
0,Ω

+ sup
t∈[0,T ]

βh(u(t))2 +
∫ T

0
βh(∂tu(t))2 dt

]

. (6.16)
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Proof. A straightforward computation yields

(∂tδδδh(t), v)σ + a(δδδh(t), v)+ ch(δδδh(t), v)= −(∂tρρρh(t), v)σ − a(ρρρh(t), v)− ch(ρρρh(t), v)

+ [ch(u(t), v)− c(u(t), v)] (6.17)

for all v ∈ Vh(Ω). Then it follows from (6.14) that

(∂tδδδh(t), v)σ + a(δδδh(t), v)+ ch(δδδh(t), v)

6 ‖∂tρρρh(t)‖σ‖v‖σ + C1(‖v‖0,Ωc + ‖curl v‖0,Ω)[‖ρρρh(t)‖H(curl;Ω) + βh(u(t))]

6
1

2
‖v‖2

σ +
1

2μ1
‖curl v‖2

0,Ω + C2[‖∂tρρρh(t)‖
2
σ + ‖ρρρh(t)‖

2
H(curl;Ω) + βh(u(t))2].

Takingv = δδδh(t) in the last inequality and recalling thatch(∙, ∙) is non-negative give

d

dt
‖δδδh(t)‖

2
σ + μ−1

1 ‖curl δδδh(t)‖
2
0,Ω 6 ‖δδδh(t)‖

2
σ + C3[‖∂tρρρh(t)‖

2
σ + ‖ρρρh(t)‖

2
H(curl;Ω) + βh(u(t))2].

We now integrate over [0, t ] (we recall thatδδδh(0)= 0) and use Gronwall’s inequality to obtain

‖δδδh(t)‖
2
σ + μ−1

1

∫ t

0
‖curl δδδh(s)‖

2
0,Ω ds6 C4

∫ T

0
[‖∂sρρρh(s)‖

2
σ + ‖ρρρh(s)‖

2
H(curl;Ω) + βh(u(s))2]ds.

(6.18)
Analogouslytakingv = ∂tδδδh(t) in (6.17) gives

‖∂tδδδh(t)‖
2
σ +

1

2

d

dt
[a(δδδh(t), δδδh(t))+ ch(δδδh(t), δδδh(t))]

= −(∂tρρρh(t), ∂tδδδh(t))σ −
d

dt
[a(ρρρh(t), δδδh(t))+ ch(ρρρh(t), δδδh(t))] + a(∂tρρρh(t), δδδh(t))

+ ch(∂tρρρh(t), δδδh(t))+
d

dt
[ch(u(t), δδδh(t))− c(u(t), δδδh(t))]

− [ch(∂tu(t), δδδh(t))− c(∂tu(t), δδδh(t))].

Next integrating over [0, t ] and using the Cauchy–Schwarz inequality and (6.15) provide

∫ t

0
‖∂sδδδh(s)‖

2
σ ds+ ‖curl δδδh(t)‖

2
0,Ω

6 C5

[

‖δδδh(t)‖
2
σ +

∫ t

0
‖δδδh(s)‖

2
σ ds+

∫ t

0
‖curl δδδh(s)‖

2
0,Ω ds+

∫ T

0
‖∂sρρρh(s)‖

2
H(curl;Ω) ds

+ sup
s∈[0,T ]

‖curl ρρρh(s)‖
2
0,Ω + sup

s∈[0,T ]
βh(u(s))2 +

∫ T

0
βh(∂su(s))2 ds

]

.
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Finally, using (6.18) we conclude that

∫ t

0
‖∂sδδδh(s)‖

2
σ ds+ ‖curl δδδh(t)‖

2
0,Ω 6C6

[∫ T

0
‖∂sρρρh(s)‖

2
H(curl;Ω) ds+ sup

s∈[0,T ]
‖curl ρρρh(s)‖

2
0,Ω

+ sup
s∈[0,T ]

βh(u(s))2 +
∫ T

0
βh(∂su(s))2ds

]

.

Theresult is now a direct consequence of the last inequality, (6.18) and (6.15). �

THEOREM 6.2 Let u anduh be the solutions of Problems (4.12) and (6.1), respectively. Assume that
u ∈ H1(0,T; H(curl; Ω)) and leteh(t) := u(t)− uh(t). There existsC > 0 such that

sup
t∈[0,T ]

‖eh(t)‖
2
H(curl;Ω) +

∫ T

0
‖eh(t)‖

2
H(curl;Ω) dt +

∫ T

0
‖∂teh(t)‖

2
σ dt

6 C

{∫ T

0
[ inf
v∈Xh(Ω)

‖∂tu(t)− v‖2
H(curl;Ω) + inf

χ∈Λh(Γ )
‖∂tλ(t)− χ‖2

1/2,Γ ]dt

+ sup
[0,T ]

inf
χ∈Λh(Γ )

‖λ(t)− χ‖2
1/2,Γ + sup

t∈[0,T ]
inf

v∈Xh(Ω)
‖u(t)− v‖2

H(curl;Ω)

}

. (6.19)

Proof. Recall thatλ(t) = μ−1
0 RcurlΓ K∗πππτu(t). Hence, the regularity assumption onu implies that

λ ∈ H1(0,T; H1/2
0 (Γ ))

and∂tλ(t) = μ−1
0 RcurlΓ K∗πππτ ∂tu(t). It follows from (6.3) that

βh(u(t)) 6 C inf
χ∈Λh(Γ )

‖λ(t)− χ‖1/2,Γ , βh(∂tu(t)) 6 C inf
χ∈Λh(Γ )

‖∂tλ(t)− χ‖1/2,Γ . (6.20)

Furthermore,since∂tΠhu(t) = Πh(∂tu(t)) the result follows by writingeh(t) = ρρρh(t) + δδδh(t) and
usingLemma6.2and (6.12). �

For anyr > 0 we consider the Sobolev space

Hr (curl; Q) := {v ∈ Hr (Q)3 : curl v ∈ Hr (Q)3},

endowed with the norm‖v‖2
Hr (curl; Q) := ‖v‖2

r,Q + ‖curl v‖2
r,Q, whereQ is eitherΩc orΩd. It is well

known that the Ńed́elec interpolantIhv ∈ Xh(Q) is well defined for anyv ∈ Hr (curl, Q) with r > 1/2
(see,for instance,Alonso Rodŕıguez & Valli, 1999, Lemma 5.1 orAmroucheet al.,1998, Lemma 4.7).
We fix now an indexr > 1/2 and introduce the space

X := {v ∈ H(curl; Ω) : v|Ωc ∈ Hr (curl; Ωc) and v|Ωd ∈ Hr (curl; Ωd)} (6.21)

endowed with the broken norm

‖v‖X := (‖v‖2
Hr (curl;Ωc)

+ ‖v‖2
Hr (curl;Ωd)

)1/2.

 by guest on F
ebruary 17, 2011

im
ajna.oxfordjournals.org

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


24of 31 R. ACEVEDO AND S. MEDDAHI

Thenthe Ńed́elec interpolation operatorIh : X → Xh(Ω) is uniformly bounded and the following
interpolation error estimate holds true (seeBermudezet al.,2002, Lemma 5.1 orAlonso Rodŕıguez &
Valli, 1999, Proposition 5.6):

‖v − Ihv‖H(curl;Ω) 6 Chmin{r,m}‖v‖X ∀ v ∈ X. (6.22)

LEMMA 6.3 Let (u, p, λ) be the solution of (4.12). If we assume that

u ∈ H1(0,T; X) and μ−1 curl u ∈ H1(0,T; X),

then

inf
χ∈Λh(Γ )

‖λ(t)− χ‖1/2,Γ 6 Chmin{r,m}‖μ−1 curl u(t)‖X (6.23)

and

inf
χ∈Λh(Γ )

‖∂tλ(t)− χ‖1/2,Γ 6 Chmin{r,m}‖∂t (μ
−1 curl u(t))‖X . (6.24)

Proof. Let IΓ
h bethe 2D Néd́elec interpolant onTh(Γ ). Using the commuting diagram property

πππτ ◦ Ih = IΓ
h ◦ πππτ

andrecalling thatcurlΓ λ = γγγ τ (μ
−1 curl u) weobtain

πππτ (Ih(μ
−1 curl u)) = IΓ

h (πππτ (μ
−1 curl u)) = IΓ

h (n × γγγ τ (μ
−1 curl u))

= IΓ
h (n × curlΓ λ) = IΓ

h (gradΓ λ).

Thenwe can findχ(t) ∈ Λh(Γ ) such that (see the proof of Proposition6.1for a similar argument)

γγγ τ (Ih(μ
−1 curl u(t))) = curlΓ χ(t).

Now by virtue of Corollary2.1

inf
χ∈Λh(Γ )

‖λ(t)− χ‖1/2,Γ 6 C1 inf
χ∈Λh(Γ )

‖curlΓ λ(t)− curlΓ χ‖−1/2,Γ

6 C1‖curlΓ λ(t)− γγγ τIh(μ
−1 curl u(t))‖−1/2,Γ

= C1‖γγγ τ (Id − Ih)(μ
−1 curl u(t))‖−1/2,Γ

6 C2‖(Id − Ih)(μ
−1 curl u(t))‖H(curl;Ω)

and(6.23) follows by using the interpolation error estimate (6.22).
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Finally, the regularity assumption onμ−1 curl u allows us to writeπππτ (Ih(∂t (μ
−1 curl u))) =

IΓ
h (gradΓ ∂tλ) and(6.24) follows by using the same arguments as above. �

The following convergence result is a direct consequence of Theorem6.2, Lemma6.3and the inter-
polation error estimate (6.22).

COROLLARY 6.1 Let l := min{r,m}. Under the assumptions of Lemma6.3we have that

sup
t∈[0,T ]

‖eh(t)‖
2
H(curl;Ω) +

∫ T

0
‖eh(t)‖

2
H(curl;Ω) dt +

∫ T

0
‖∂teh(t)‖

2
σ dt

6 Ch2l

{

sup
t∈[0,T ]

‖u(t)‖2
X + sup

t∈[0,T ]
‖μ−1 curl u(t)‖2

X +
∫ T

0
‖∂tu(t)‖2

X dt

+
∫ T

0
‖∂t (μ

−1 curl u(t))‖2
X dt

}

.

REMARK 6.2 Let us recall that

λ(t) = μ−1
0 R(curlΓ K∗πππτu(t)) and λh(t) = μ−1

0 Rh(curlΓ K∗πππτuh(t)).

Therefore,using (6.20) and the uniform boundedness ofRh, we obtain

μ0‖λ(t)− λh(t)‖1/2,Γ 6 βh(u(t))+ ‖RhcurlΓ K∗πππτ (u − uh)(t)‖1/2,Γ

6 C

{
inf

χ∈Λh(Γ )
‖λ(t)− χ‖1/2,Γ + ‖eh(t)‖H(curl;Ω)

}
.

Consequently, using Lemma6.3and Corollary6.1we have

∫ T

0
‖λ(t)− λh(t)‖

2
1/2,Γ dt 6 Ch2l ,

with l := min{r,m}.

7. Analysis of a fully discrete scheme

7.1 Well-posedness

We consider a uniform partition{tn := nΔt : n = 0, . . . , N} of [0, T ] with a step sizeΔt := T
N . For

any finite sequence{θn : n = 0, . . . , N} we denote

∂̄θn :=
θn − θn−1

Δt
, n = 1,2, . . . , N.
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A fully discrete version of problem (4.12) reads as follows:
For n = 1, . . . ,N, find (un

h, pn
h, λ

n
h) ∈ Xh(Ω)× Mh(Ωd)×Λh(Γ ) such that

(∂̄un
h, v)σ + b(v, ∂̄ pn

h)+ a(un
h, v)+ μ−1

0 〈S(curlΓ πππτun
h), curlΓ πππτv〉1/2,Γ

+ 〈K curlΓ λn
h(t), πππτv〉τ,Γ = (f (tn), v)0,Ω ∀ v ∈ Xh(Ω),

− 〈curlΓ η,V(curlΓ λn
h)〉τ,Γ + μ−1

0 〈K(curlΓ η), πππτun
h〉τ,Γ = 0 ∀ η ∈ H1/2

0 (Γ ),

b(un
h,q) = 0 ∀ q ∈ Mh(Ωd),

u0
h|Ωc = 0,

p0
h = 0,

λ0
h = 0.

(7.1)
Writing the second equation of (7.1) asλn

h = μ−1
0 Rh(curlΓ K∗πππτun

h) we can reformulate the prob-
lem as follows:

For n = 1, . . . ,N, find (un
h, pn

h) ∈ Xh(Ω)× Mh(Ωd) suchthat

(∂̄un
h, v)σ + b(v, ∂̄ pn

h)+ a(un
h, v)+ ch(un

h, v) = (f (tn), v)0,Ω ∀ v ∈ Xh(Ω),

b(un
h,q) = 0 ∀ q ∈ Mh(Ωd),

u0
h|Ωc = 0,

p0
h = 0.

(7.2)

Hence,at each time step we have to find(un
h, pn

h) ∈ Xh(Ω)× Mh(Ωd) suchthat

(un
h, v)σ +Δt [a(un

h, v)+ ch(un
h, v)] + b(v, pn

h)= Fn(v) ∀ v ∈ Xh(Ω),

b(un
h,q)= 0 ∀ q ∈ Mh(Ωd),

where

Fn(v) := Δt (f (tn), v)0,Ω + (un−1
h , v)σ + b(v, pn−1

h ).

Our numerical scheme is then well defined since the existence and uniqueness of(un
h, pn

h) is a direct
consequence of the Babuška–Brezzi theory. Indeed, the bilinear formb satisfies the discrete inf–sup
condition (6.10) and the bilinear form

(v,w) 7→ (v,w)σ +Δt [a(v,w)+ ch(v,w)]

is elliptic on its kernelVh(Ω) (cf. Lemma6.1).

REMARK 7.1 We point out that the problem that must be solved in practice is (7.1). Its reduced (and
equivalent) formulation (7.2) is only used here to simplify the analysis of the problem. It is prohibitive
to compute the matrix corresponding to the operatorRh (which is part of the definition ofch(∙, ∙)).
Problem(7.2) is then not feasible for numerical experiments unless a conjugate gradient type method is
used to solve the linear systems of equations. Indeed, in this case it is not necessary to store the matrix
corresponding toRh sinceonly its action on a vector is needed at each iteration of the iterative method.
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7.2 Error estimates

LEMMA 7.1 Let ρρρn := u(tn) − Πhu(tn), δδδn := Πhu(tn) − un
h, τττn := ∂̄u(tn) − ∂tu(tn) andlet βh be

definedas in (6.13). There existsC > 0 independent ofh andΔt such that

max
16k6n

‖δδδk‖2
H(curl;Ω) +Δt

n∑

k=1

‖∂̄δδδk‖2
σ 6C

{

Δt
n∑

k=1

[‖∂̄ρρρk‖2
H(curl;Ω) + ‖τττ k‖2

H(curl;Ω) + βh(∂tu(tk))2]

+ max
16k6n

‖ρρρk‖2
H(curl;Ω) + max

16k6n
βh(u(tk))2

}

. (7.3)

Proof. It is straightforward to show that

(∂̄δδδk, v)σ + a(δδδk, v)+ ch(δδδ
k, v)= −(∂̄ρρρk, v)σ − a(ρρρk, v)+ (τττ k, v)σ

− ch(ρρρ
k, v)+ ch(u(tk), v)− c(u(tk), v) (7.4)

for any v ∈ Vh(Ω). Choosingv = δδδk in the last identity, recalling thatch(∙, ∙) is non-negative and
uniformly bounded, and using the estimates

a(δδδk, δδδk) > μ−1
1 ‖ curl δδδk‖2

0,Ω and (∂̄δδδk, δδδk)σ >
1

2Δt
(‖δδδk‖2

σ − ‖δδδk−1‖2
σ ),

togetherwith (cf. (6.15))

‖δδδk‖H(curl;Ω) 6 C[‖δδδk‖σ + ‖curl δδδk‖0,Ω], k = 1, . . . , n, (7.5)

and the Cauchy–Schwarz inequality lead us to the following inequality:

‖δδδk‖2
σ − ‖δδδk−1‖2

σ +Δt μ−1
1 ‖ curl δδδk‖2

0,Ω

6
Δt

2T
‖δδδk‖2

σ + CΔt [‖∂̄ρρρk‖2
σ + ‖ρρρk‖H(curl;Ω) + ‖τττ k‖2

σ + βh(u(tk))2]. (7.6)

Next summing overk in

‖δδδk‖2
σ − ‖δδδk−1‖2

σ 6
Δt

2T
‖δδδk‖2

σ + CΔt [‖∂̄ρρρk‖2
σ + ‖ρρρk‖2

H(curl;Ω) + ‖τττ k‖2
σ + βh(u(tk))2]

andusing the discrete Gronwall’s lemma (see, for instance, Lemma 1.4.2 fromQuarteroni & Valli, 1994)
and the fact thatδδδ0 = 0 yield

‖δδδn‖2
σ 6 CΔt

n∑

k=1

(‖∂̄ρρρk‖2
σ + ‖ρρρk‖2

H(curl;Ω) + ‖τττ k‖2
σ + βh(u(tk))2), (7.7)
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for n = 1, . . . , N. Inserting the last inequality in (7.6) and summing overk we have the estimate

‖δδδn‖2
σ +Δt

n∑

k=1

‖ curl δδδk‖2
0,Ω

6 CΔt

(
n∑

k=1

‖∂̄ρρρk‖2
σ +

n∑

k=1

‖ρρρk‖2
H(curl;Ω) +

n∑

k=1

‖τττ k‖2
σ +

n∑

k=1

βh(u(tk))2
)

. (7.8)

Taking nowv = ∂̄δδδk in (7.4) produces the identity

‖∂̄δδδk‖2
σ + a(δδδk, ∂̄δδδk)+ ch(δδδ

k, ∂̄δδδk)

= −(∂̄ρρρk, ∂̄δδδk)σ + (τττ k, ∂̄δδδk)σ + a(∂̄ρρρk, δδδk−1)+ ch(∂̄ρρρ
k, δδδk−1)+ c(τττ k, δδδk−1)

− ch(τττ
k, δδδk−1)+ c(∂tu(tk), δδδk−1)− ch(∂tu(tk), δδδk−1)−

1

Δt
(γk − γk−1) (7.9)

with γk := a(ρρρk, δδδk)+ch(ρρρ
k, δδδk)+c(u(tk), δδδk)−ch(u(tk), δδδk). On the other hand, asa(∙, ∙) andch(∙, ∙)

arenon-negative, it is easy to check that

a(δδδk, ∂̄δδδk) >
1

2Δt
[a(δδδk, δδδk)− a(δδδk−1, δδδk−1)], ch(δδδ

k, ∂̄δδδk) >
1

2Δt
[ch(δδδ

k, δδδk)− ch(δδδ
k−1, δδδk−1)].

Usingthese inequalities together with the Cauchy–Schwarz inequality in (7.9) lead to

1

2
‖∂̄δδδk‖2

σ +
1

2Δt
[a(δδδk, δδδk)− a(δδδk−1, δδδk−1)] +

1

2Δt
[ch(δδδ

k, δδδk)− ch(δδδ
k−1, δδδk−1)]

6 C(‖∂̄ρρρk‖2
σ + ‖τττ k‖2

σ )+ a(∂̄ρρρk, δδδk−1)+ ch(∂̄ρρρ
k, δδδk−1)+ c(τττ k, δδδk−1)− ch(τττ

k, δδδk−1)

+ c(∂tu(tk), δδδk−1)− ch(∂tu(tk), δδδk−1)−
1

Δt
(γk − γk−1).

Thensumming overk and recalling thatch(∙, ∙) is non-negative we deduce that

1

2

n∑

k=1

‖∂̄δδδk‖2
σ +

1

2μ1Δt
‖curl δδδn‖2

0,Ω

6 C1

n∑

k=1

(‖∂̄ρρρk‖2
σ + ‖τττ k‖2

σ )+
n∑

k=1

(θ1,k + θ2,k + θ3,k)+
1

Δt
|γn|, (7.10)

with θ1,k := |a(∂̄ρρρk, δδδk−1)|, θ2,k := |ch(∂̄ρρρ
k, δδδk−1)|, θ3,k := |c(τττ k, δδδk−1) − ch(τττ

k, δδδk−1)| andθ4,k :=
|c(∂tu(tk), δδδk−1)− ch(∂tu(tk), δδδk−1)|.
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It is easy to obtain from the Cauchy–Schwarz inequality and (7.5) the bounds

n∑

k=1

θ1,k 6
n∑

k=1

‖curl δδδk−1‖2
0,Ω + C2

n∑

k=1

‖curl ∂̄ρρρk‖2
0,Ω,

n∑

k=1

θ2,k 6
n∑

k=1

[‖δδδk−1‖2
σ + ‖curl δδδk−1‖2

0,Ω + C3‖∂̄ρρρ
k‖2

H(curl;Ω)],

n∑

k=1

θ3,k 6
n∑

k=1

[‖δδδk−1‖2
σ + ‖curl δδδk−1‖2

0,Ω + C4‖τττ
k‖2

H(curl;Ω)],

n∑

k=1

θ4,k 6
n∑

k=1

[‖δδδk−1‖2
σ + ‖curl δδδk−1‖2

0,Ω + C5βh(∂tu(tk))2],

|γn| 6 ‖δδδn‖2
σ +

1

4μ1
‖curl δδδn‖2

0,Ω + C6[‖curl ρρρn‖2
0,Ω + βh(u(tn))2].

Substitutingthe last inequalities in (7.10) and using (7.8) we obtain

Δt
n∑

k=1

‖∂̄δδδk‖2
σ + ‖curl δδδn‖2

0,Ω 6C7

{

Δt
n∑

k=1

[‖∂̄ρρρk‖2
H(curl;Ω) + ‖ρρρk‖2

H(curl;Ω) + ‖τττ k‖2
H(curl;Ω)

+ βh(u(tk))2 + βh(∂tu(tk))2] + ‖curl ρρρn‖2
0,Ω + βh(u(tn))2

}

.

Theestimate (7.3) follows directly from a combination of the last inequality with (7.8) and (7.5). �

THEOREM 7.1 Let u andun
h be the solutions of problems (4.12) and (7.1), respectively. Assume that

u ∈ H2(0,T; X) andlet en := u(tn) − un
h. Then there exists a constantC > 0, independent ofh and

Δt , such that

max
16n6N

‖en‖2
H(curl;Ω) +Δt

N∑

k=1

‖∂̄ek‖2
σ

6 C

{
max

16n6N
inf

v∈Xh(Ω)
‖u(tn)− v‖2

H(curl;Ω) + max
16n6N

inf
ξ∈Λh(Γ )

‖λ(tn)− ξ‖2
1/2,Γ

+Δt
N∑

n=1

inf
ξ∈Λh(Γ )

‖∂tλ(tn)− η‖2
1/2,Γ +

∫ T

0
( inf
v∈Xh(Ω)

‖∂tu(t)− v‖2
H(curl;Ω)) dt

+ (Δt)2
∫ T

0
‖∂t tu(t)‖2

H(curl;Ω) dt

}
.

Proof. The result is obtained by using (6.20) and Lemma6.2 and proceeding as in theorem 6.2 of
Acevedoet al. (2009). �
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Note that, because of (5.4), the stability of our fully discrete scheme is also guaranteed by the last
estimate. Finally, with the aid of Lemma6.3, Theorem7.1 and the interpolation error estimate (6.22)
we deduce the following asymptotic error estimate for our fully discrete scheme.

COROLLARY 7.1 Under the assumptions of Lemma6.3and Theorem7.1we have that

max
16n6N

‖en‖2
H(curl;Ω) +Δt

N∑

k=1

‖∂̄ek‖2
σ

6 Ch2l
{

max
16n6N

‖u(tn)‖2
X + max

16n6N
‖μ−1 curl u(tn)‖2

X

+ max
16n6N

‖∂t (μ
−1 curl u(tn))‖2

X +
∫ T

0
‖∂tu(t)‖2

X dt

}
+ C(Δt)2

∫ T

0
‖∂t tu(t)‖2

σ dt,

with l := min{m, r }.

REMARK 7.2 As λn
h = μ−1

0 Rh(curlΓ K∗πππτun
h), we can proceed as in Remark6.2to obtain

Δt
n∑

k=1

‖λ(tn)− λn
h‖2

1/2,Γ 6 C[h2l + (Δt)2],

with l := min{r,m}.
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