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In this paper we analyse a mixed finite-element method and boundary-element method coupling for a
time-dependent eddy current problem posed in the whole space and formulated in terms of the electric
field E. The coupled problem is obtained by first proposing a mixed formulation of the interior problem

in order to handle efficiently the divergence-free constraint satisfitlibya dielectric material. Next we
incorporate the far-field effect in the latter formulation through boundary integral equations defined on the
coupling interface. We show that the resulting degenerate parabolic problem (with saddle point structure)
is well-posed and useédelec edge elements and standard nodal finite elements to define a semidiscrete
Galerkin scheme. Furthermore, we introduce the corresponding backward Euler fully discrete formula-
tion and analyse the asymptotic behaviour of the error in terms of the discretization parameters for both
schemes.

Keywords eddy current problem; saddle point problems; mixed finite eleme@<IBc finite elements;
boundary elements.
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1. Introduction

The eddy current problem is naturally formulated in the whole space with decay conditions on the§
fields at infinity (see, for instancémmari et al., 2000). Consequently, to apply conventional numer- =
ical methods, such as the finite-element method (FEM), it is necessary to reduce the problem to a
bounded domain. The most common approach consists in restricting the equations to a sufficiently large
computational domain containing the region of interest and imposing an artificial homogeneous boun-
dary condition on its border (which must be ‘sufficiently’ far away from the conductor). This strategy
yields the difficulty of fixing a convenient cut-off distanagriori. Moreover, in the case of conductors

with a ‘special’ shape or a very large computational domain, a finite-element mesh can lead to a very
large number of elements. On the other hand, methods based on boundary integral equations, like the
boundary-element method (BEM), in general cannot be directly applied because the equations are not
homogeneous and have variable coefficients.
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Sincethe equations of the eddy current problem are complex techniques combining BEM and
FEM look convenient only in a bounded region. The first FEM—BEM couplings for the eddy current
model were proposed by engineeBaissavit & \erité (1982,1983) (using the magnetic fiel in the
conductor and the Steklov—Poinéawperator) andlayergoyzet al. (1983) (using the electric fielk
in the conductor and certain harmonic basis functions near its bouddairom a mathematical point
of view more recent results based on the well-known symmetric meth@bbiabel1988) are due to
Hiptmair (2002) (usingk in the conductor anél x n on 2') andMeddahi & Selgag2003) (usingH
in the conductor and the normal trace of the magnetic inductio® pfor the time-harmonic problem.
Another FEM—-BEM approach for the same problem in terms of vector and scalar potentials has also
been recently analysed Byonso Rodiguez & Valli (2009).

When the conductor is multiply connected the approach mentioned above requires the construction
of cumbersome (and expensive) cutting surfaces in order to deal correctly with the discrete problem (see
alsoBermudezet al., 2002). RecentlyAlonso Rodrguezet al. (2004) showed that the time-harmonic
H-based formulation of the eddy current problem (posed in a bounded domain) admits a saddle point
structure that is free from the above restriction (see Kleddahi & Selgas2008, for a similar strategy
applied to the case of a time-dependent eddy current problem posed in the whole space). Such a formu-
lation is obtained by solving the problem in a b@xcompletely containing the conduct@r, andby
introducing a Lagrange multiplier associated to thel-free constraint satisfied by the magnetic field
in the insulating regio®y := Q \ Q. surroundinghe conductor. We adopt here the same point of view
for the problem under consideration.

Actually our goal is to introduce a new method to solve the time-dependent eddy current problem,
based on a mixed FEM and BEM coupling. We use as main variable a time primitizerof2 (see
also Bossavit,1999). The divergence free condition in the insulating material is handled through a
Lagrange multiplier, which gives rise to a saddle point formulation in the interior domain. The integral
representation of the electric field in the complementary unbounded domain provides nonlocal boundary
conditions for the interior mixed formulation. This approach extends our previous Woekédoet al.,

2009), where the eddy current problem is assumed to be posed in a bounded domain.

A feature of our formulation is that the compact support of the current density is not necessar-
ily assumed to be completely contained in the conductor or in its exterior. Furthermore, we choose
Q simply connected with a connected boundary in order to be able to introduce a certain scalar po-
tential as a boundary variable and use standard nodal finite elements to approximate it. On the other
hand, in contrast to the formulation given Meddahi & Selgag2008), our approach fits well into
the theory of monotone operators because the reluctivity (the inverse of the magnetic permeability)
appears as a diffusion coefficient in the degenerate parabolic problem at hand. Consequently, this ap-
proach seems convenient when the relation between the magnetic field and the magnetic induction
(given by the reluctivity) depends on the magnetic induction intensity, which is typical for ferromagnetic
materials.

We perform a space discretization of our weak formulation by usiedec edge elements for the
main unknown and standard finite elements for the Lagrange multiplier and the boundary variable. We
show that our semidiscrete Galerkin scheme is uniquely solvable and provides error estimates in terms
of the space discretization parametetVe also propose a fully discrete Galerkin scheme based on a
backward Euler time stepping. Here again, we provide error estimates that prove optimal convergence.
Moreover, we obtain error estimates for the eddy currents and the magnetic induction field.

The paper is organized as follows. In Sect@rmve summarize some results froBuffa (2001),

Buffa & Ciarlet(2001) andBuffa et al. (2002) concerning tangential differential operators and traces in
H(curl; Q). In Sectiorn3 we introduce the model problem. We derive a symmetric mixed FEM and BEM
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coupling of our problem in Sectiohand prove that it is uniquely solvable in Sect®riThe construction
of a semidiscretization in space and the analysis of its convergence are reported in Gdeitatly, a

backward Euler method is employed to obtain a time discretization of the problem. The results presented

in Section? prove that the resulting fully discrete scheme is convergent with optimal order.

2. Preliminaries

We use boldface letters to denote vectors as well as vector-valued functions and the|gynefo@sents
the standard Euclidean norm for vectors. In this secflos a generic bounded Lipschitz domairiRi.
We denote by its boundary and by the unit outward normal t@. Let

(. 9)o.0 = / fq
Q

be the inner product ind(Q) and|- |0, thecorresponding norm. As usual, for al> 0, |-||s.o Stands
for the norm of the Hilbertian Sobolev spacé(?) and|-|s o for the corresponding seminorm. The
space H/2(I") is defined by localization on the Lipschitz surfate We denote byl-||12 - the norm

in HY2(I") and(-, -)1 2, standgfor the duality pairing between¥(I") and its dual H/2(I"). From
now on we denote by : H}(Q) — HY2(I") andy : H1(Q)3 — H/2(I")3 thestandard trace operator
acting on scalar and vector fields, respectively.

2.1 Tangential differential operators and traces
We consider the space

L2(I) :={AeL?(I')*: A-n=0},
endaved with the standard norm in?(/")3. We define the tangential trage, : €>°(Q)3 — L%(I")
and the tangential component trace : C*(Q)3 — Lf(l“) asy . v:=yvxnandz,.v:=nx(yvxn),
respectiely. The previous traces can be extended by completenesy )8 The spaces i/ 2(1“) =
7y, (HY(Q)3) andHﬁ/Z(F) = . (HL(2)?3) are,respectively, endowed with the Hilbert norms

‘= inf w Ty W=},
otz ) WeHl(g)s{” Loy w=n}
Il ) = Wdﬂ{ma{nwnl,g LmW = ).

Let us note that the density of ¥#(I")3 in L2(I")3 ensureghatH/2(I") andHﬁ/z(F) are dense sub-
spaces oE2(I"). We denote b 11/2(1“) andH[l/z(F) the dual spaces dﬂi/z(l“) andHﬁ/z(F) with
L2(I") as pivot space, with duality pairing, )1, rand(-, -), r, respectively.

We introduce the tangential differential operators
grad ¢ =z (gradgp) and curlr¢:=y_(gradgp) Vo € H2(Q).

Let H3/2(I") := y (H3(Q)). It is well known that the previous operators depend only on the trége
on I", which implies that

grad : H¥2(I') » HI2() and curl - H¥Y2(I) - HYA(D) 2.1)
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arelinear and continuous (cBuffa et al., 2002, proposition 3.4). Let ¥/2(I") be the dual space of
H3/2(I") with L2(I") as pivot space. We define

divy : H[l/Z(F) — H™¥2(I") and curf : HY2(I) — H™32(I") (2.2)

by the dualities

(divra, @)z, r=—(n,grad ), V¢ e H2(I) vy eH 20D,

(2.3)
(curlré, dhajp.r =& cutlr ), Ve HY2(I) vE e HTYAI).

The following proposition is proved iBuffa et al. (2002, proposition 3.6).

PROPOSITION2.1 The operatorgrad - andcurl 7 given in 2.1) can be extended to'(7"). More-

over,grad : HY?(I') - Hll/z(l") andcurl - : HY2(I") — H[l/z(l“) are linear and continuous.

Analogously the transpose operators introducedif)(are also continuous for the following choice

of spaces: diy : Hi/z(l“) — H=Y2(r) and cur}- : Hﬁ/z(l“) — H~Y2(I"). Furthermore, analogous

identities to (2.3) still hold for any € H/2(I"), n € Hi/z(l“) and¢ e Hﬁ/z(l“). More precisely, we
have

(divrn, d)ajp,r=—(grad, ¢, n), V¢ e HY2(I) vy eHTAD),
(curlrg, g)ajp,r=(curlr ¢, &y ¥ e HYAI) v e H2().
Let
H(curl; Q) :={ve L2(Q)%: curl ve L%(2)3%},
endaved with the norm
IVlIHceun: @) == (IVI5 o + llcurl v[i3 o). (2.4)

Usingthe Green formula (see, for instan@&ffa & Ciarlet, 2001, for the case of Lipschitz polyhedra
andBuffa et al., 2002, for arbitrary Lipschitz domains)

(u, curl v)o, o — (curl u,v)o 0 = (y ;. U, 7r,v)|| F=—(mv,y.u) . Vuve ¢ (Q)3
andthe density of£> (2)3 in H(curl; Q) (see, for instancévionk, 2003, theorem 3.26) and in'k2),

it follows that

-1/2 -1/2

y. tH(eurl; Q) > H ™50, @ s H(eurl; @) > H W)

are continuous. The spakk(curl; Q) stands for the kernel of . in H(curl; Q). The ranges of , and
« . arecharacterized in the following result.

THEOREM2.1 Let

H=Y2 (divy; 1) i= (A e H Y2(0) « divrd e HY2(1))

and
H=Y2 (curlp; I) i= {4 e HTY2(I) : curlpd e HTY2()).
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Then
. . —1/2 (Hin .- . . -1/2 .
y, - H(curl; Q) > H (divp; Iy, =, :H(curl; Q) > H (curlp; I)

aresurjective and possess continuous right inverses.

The space$i =1/ (divy; I') andH~/2 (curly; I') aredual to each other, whelo?(I) is used as
pivot space, i.e., the usuaE(F)—inner product can be extended to a duality pairfing),,r between
H=12 (div;; I") andH~1/2 (curl;; I"). Moreover, the following integration by parts formula holds:

(u, curl v)o,@ — (curlu,v)o,0 = (y U, @ V)., YU,V e H(curl; Q). (2.5)

Proof. See Theorem 4.1 and Lemma 5.6fffa et al. (2002). O
Let Q be a Lipschitz polyhedron. The following theorem gives a characterization of the space

H=Y2 (div0; I') := {g e H~Y2 (divy; I') : divy9q = 0}.
THEOREM 2.2 Let & be a regular bounded open connected and simply connected sulisktsoich
thatQ c 0. We setQg := 0\ Q. Let H; andH, bethe spaces of the so-called harmonic Neumann
fields associated t@ andQe, respectively, i.e.,
Hj := {v e H(curl; Q) NH(div; ) : curlv=0,divv=0,v-n|r =0},

Hp := {v e H(curl; Q&) NH(div; Qext) : curl v=0,divv=0,V-N|yg., = 0}

Letn € H=Y2(divy; I'). Then div-q = 0 if and only if there exists. € HY/2(I"), v; € H; and
v, € H> suchthat

n=curlr A+mvi+m V2.
Proof. SeeBuffa (2001, Section 3). |
If Q is simply connected, it is well known th&t; = Ho = {0} (see, for instanceédAmroucheet al,,
1998, subsection 3.3). Therefore, the previous theorem implies that

H~=Y2 (div,0; I') = curl - (HY?(I)).

Furthermore, ifl” is connected then kemirl ) N HY/2(I") = R (cf. Buffa et al., 2002, Corollary 3.7).
Consequently, the next result follows immediately from Proposiidn

COROLLARY 2.1 Let
1/2
Hy2(I) = [;7 e HY2(ry /r" - 0] .
If Q issimply connected and' is connected then the operator

curl  : HY2(I) » H™Y2 (div0; I)

is an isomorphism.
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We will also use the normal tragg : € (2)3 — L2(I") given byg — y g-n. Itis well known that
this operator can be extended to a continuous and surjective mapping (see, for ingtamce?003,
theorem 3.24)

yn o H(div; Q) - H™Y2(1),
where
H(div; Q) := {g e L?(Q)3 : divg e L2(Q)}

is endowed with the normiv I iv; o) := (||v||(2)79 +|div v||S,Q)1/2. We denote byHo(div, Q) the kernel
of yn in H(div; Q).

2.2 Basic spaces for time-dependent problems

Since we will deal with a time-domain problem, besides the Sobolev spaces defined above, we need to

introduce spaces of functions defined on a bounded time int@yal) and with values in a separa-
ble Hilbert space/, whose norm is denoted here yjv. We use the notatio°([0, T]; V) for the
Banach space consisting of all continuous functiéns[0, T] — V. More generally, for ank € N,
€%([0, T]; V) denotesthe subspace o&°([0, T]; V) of all functions f with (strong) derivatives of
order at mosk in €°([0, T]; V), i.e.,
k . 0 Ldif 0 ;
¢“(0,T]; V) := [f e ¢ (0, T; V): il e (0, T; V), 1< j < k].

We also consider the spacé(D, T; V) of classes of functions : (0, T) — V that are Bochner
measurable and such that

;
1020y, :=/0 1112 dt < +oo.

Furthermorewe will use the space
d
HY(0,T; V) = If e L?(0,T;V): af € L2(O,T;V)],

where%f is the (generalized) time derivative df (see, for instanceZeidler, 1990, section 23.5). In
what follows we will use indistinctly the notations

d
—f =g f
dt !

to express the time derivative df. Analogously we define {0, T; V) for all k € N.

3. The model problem

We assume that the conductor is represented by a connected and bounded polyhedrd? with
aLipschitz boundary>'. We denote by2;,i = 0, ..., |, the connected components bfand assume
that X is the boundary of the unbounded componenRéf\ Q.. The unit normal vecton on X is
pointed outwards.
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Given a time-dependent compactly supported current dedisityr aim is to find an electric field
E(x, t) and a magnetic fieltl (x, t) satisfying the following equations:

a(uH) +curlE=0 in R3x(0,T), (3.1)
culH=J+6E in R®x[0,T), (3.2)
diveE) =0 in (R3\ Q) x [0, T), (3.3)
/gE.nzo in [0,T), i=0,...,1, (3.4)

2
H(x,0)=Ho(x) in R (3.5)

1 1

Hx,t)=0 (M) and E(x,t)=0 (m) as |x| - oo, (3.6)

where the asymptotic behavio8.6) holds uniformly in [Q T]. The electric permittivitys, the electric
conductivitys and the magnetic permeabilifyare piecewise smooth real-valued functions satisfying

e(X) =¢go ae.in R3\ Q,
61>0(X)>00>0 ae.in Q¢ and o(x) =0 ae.in R3\ Q,
ur>pn(x) > puo>0 ae.in Q. and u(X)=uo ae.in R3\ Q.
LetQ c R_3 bea connected and simply connected polyhedron with a connected boufidary
and suchthat Q. U suppd c Q. We introduceQq := Q \ Q¢ and®’ := R3\ Q. We also denote by

the outward normal unit vector aofi. It is important to note that sinee = 0 in Qg, (3.2) implies that)
must satisfy the compatibility conditions

divl=0inQq and (ynloy), 12,5 =0, i=0,...,1, (3.7)

forallt € (0,T).
For reasons that will be clear later (see Rentad) we need to consider a modified electric field.

To this end let us denote b@é, i =0,...,1, the connected components &f with 69& = Ji,
i=1,...,1, andaQé’ = I"U 2. See Figl for a simple representation of our geometrical setting. We
introduce the function
0 iINQUQRIU---UQJ,
Fi=1w in .Qg,
Yext In 'Q/a

wherey e HY(QJ) is the unique harmonic function satisfying (grad y) = ynE on I" andy(y) = 0
on Yo and eyt is the unique harmonic function from

»

wlQ’) = 9(Q); ———
(29 peP'(Q) T

e L?(Q’),grad g € LZ(Q’)3]
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FiG. 1. The geometrical setting.

satisfying the boundary conditionyext = 7 w on I'. It turns out that the shifted electric fiekel :=
E — grad F and the magnetic fieldl solve the following equations:

& (uH) + curl E* 0 in Qx(0,T),

culH = J+4+o0E* in Qx][0,T),

div(eE*) = 0 in Qgx[0,T),

/eoE*-n = 0 in [0,T), i=0,...,1,

B y(EY = 0 on I'x[0,T),
y7E) = yfE)H on I'x[0.T), 3.8)
yzH) = yfH) on I'x[0,T),

a(uoH)+curlE* = 0 in Q' x (0,T),

culH = 0 in Q'x][0,T),

div(egE*) = 0 in Q'x[0,T),
H(x,0)0 = Ho(x) in RS,

Hx,t)=0(1/|x]) and E*(x,t) = 0(1/|x]) as |X| - oo.

It is important to note that the change of variable leaves the electric field unchanged in the conductor
sinceE* = Ein Q.. In the equations above; refers to the tangential trace dhtaken fromQ’ andy
to the tangential trace taken frofh. We adopt the same convention for any other kind of trace operator.
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In order to obtain a suitable variational formulation for the previous problem we proceed as in
Acevedoet al. (2009, section 3) and introduce the variablg, t) := fé E* (X, s)ds. Next we integrate
the first equation of3.8) with respect td to obtain the expressioH = —u~tcurlu + Hg of the
magnetic field in terms ai. This leads us to the following formulation of the problem:

Findu : R3 x [0, T] — RS2 suchthat

oou+curl g=leurlu = f in Q@ x(0,T),
dvu = 0 in Q¢x][0,T),
/eou~n = 0 in [0,T), i=0,...,1,
B ux,0)0 = 0 in RS
yo W) = 0 on I'x[0,T),
ztu z7u on I x[0,T), (3.9)
y;(ﬂalcurl u) yj(,ualcurl u on I'x[0,T),
curlcurlu = 0 in Q'x[0,T),
dvu = 0 in Q' x[0,T),
ux,ty = O(/Ix]) as |x| — oo,
curlux,t)y = O(@/Ix]) as |x| — oo,
where
f:=curlHo—J. (3.10)

We assume that both andcurl Hg belongto L2(0, T; L2(Q)). Hence, the right-hand sidealso be-
longs to the same space. Moreover, we deduce fi2T) @nd (3.10) that inherits fromJ the same
compatibility conditions, i.e.,

divf =0 in Qg and (yn(floy), 12,5 =0, i=0,...,1,

forallt € (0, T). Let us also remark that equatio®2) provides at the initial time= 0 the relation

curl Hg = J(x, 0) + o (X)E(x, 0) (3.12)

(3.11)

in RS,
It then follows from our hypotheses drandes that the support of is compact and contained .
REMARK 3.1 Note that the new variableis a vector potential oft(H — Hp) in 2, i.e.,

u(H—Hp)=—curlu inQ x[0,T).

Moreover, a£* = E — grad F andE* = ¢;u we have thaE = 6;u + grad F andour formulation may
be viewed as théA, V — A) formulation presented iBird6 & Preis(1989) andBir6 & Valli (2007) with
a vector potential := u and a scalar potential := F that vanishes i®2.. Here we only maintain the
variableu and use (as seen iB.9)) the gauge conditions

divu=0inQg x [0, T); /eou~n:0, i=0,....,1; y,(uw=0o0on7 x[0,T),
i

in order to guarantee the uniqueness (cf. Thedselh
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4. The variational formulation
4.1 A mixed formulation in2

We introduce the space
M(Qq) := {q e HY(Qq) / g=0,andyq|s, =Ci,i =0,..., I }
Qq

It is well known that|-|1 o4 iS @ norm inM (£24) equialent to the H(Qgq)-norm. Let us consider now
the kernel

V(2) :={veH(curl; Q): b(v,q) =0vVq € M(Qg)} (4.1)
of the bilinear form
b(v,q) == (ev,gradq)g g, -

Taking into account thatis constant ifR3 \ Q. it straightforward to obtain the following characteriza-
tion of V (Q).

LEMMA 4.1 There holds

V(Q) ={veH(curl; Q): divv=0inQq; yov=00nT7; (ypv,1)12,5 =0,i =0,...,1}.

Let H(curl; Q¢) bethe dual space dfi(curl; Qc) with respect to the pivot space

L2(Q¢, 0)% = [v: Q.- R® Lebesguemeasurable/ oV < oo] )
Qc
We define
Wo = {veL?0,T;V(Q)): vlg, € WO, T; H(curl; c))}
with
W0, T; H(curl; Q¢)) = {ve L20, T; H(curl; Q¢)) : év e L2(0, T; H(curl; Q¢))}.
We also introduce
W = {veL?0,T;H(url; 2)) 1 V|g, € W0, T; H(curl; Q¢))}.
Notethat””” endowed with the graph norm
2 T 2 T 2
I\ % :2/0 ”V(t)”H(curl;_Q) dt+/0 ||atV(t)||H(Cur|;gc)/ dt

is a Hilbert space and tha# is a closed subspace of.

We test the first equation of (3.9) withe V(Q) and use the Green formul@.5) to obtain the

following variational formulation:
Findu € #4 suchthat

d
a(oU(t), V)o,0, + (™ eurl u(t), curl vio,o — (v, (ug teurl u®)), m V)., r = (F (1), Vg o
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forall v e V(Q). Next we introduce a Lagrange multiplipft) to relax the divergence-free restriction
(implicit in the definition ofV (2)) and end up with the following mixed variational formulation:
Findu € # andp € L2(0, T; M(£q)) suchthat

%[(a u(t), V)o.q, + b(v, p)] + (x~teurl u, curl v o
~(r7 (gt eurlu®), @ Vi, r = (F(1), Vo,
b(u(t), o) =0,
ule.(0)=0

(4.2)

for allv e H(curl; Q) and for allg € M(Qq). Finally, testingcurl curl u = Owith gradr,r € H1(Q"),
andapplying againZ.5) we deduce that

divrly F(ugteurlu)] = 0.

ConsequentlyCorollary2.1 shows that there exists a unigi@) e H(l)/z(l“) such that

y-(u teurlu(t)) =curl A(t) onI fora.et e (0,T). (4.3)
With the last identity at hand and denoting
(V, W), 1= (oV,W)o,0, VV,W e L*(Qc,0)°, (4.4)

we can rewrite (4.2) as follows:
Findu € # andp e L2(0, T; M(Qq)) suchthat

%[(U(t), V)U + b(V, p(t))] + (:u_l curl u, curl V)O,Q - <Curlf j's 7[TV>T,F = (f (t)’ V)O,.Qs
b(u(t), q) =0, (4.5)
ule.(0)=0

for all v e H(curl; Q) and for allg € M(Qq).

4.2 Nonlocalboundary conditions o

We deduce from the last four equations 819) thatu admits the following integral representation (see,
for instanceHiptmair, 2002, sectiorb):

u(x):curlx/ Ex,y)n x zfu dSy—/ E(x,y)y  (curl uyds,
r I

- gradx/ E(X,y)yudS, (4.6)
r
for anyx e Q’. HereE is the fundamental solution of the Laplace equatioR#i.e.,

ECGy) = x,yeR3 x#£y.

zIx =y’
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We will make repeated use of the integral operators formally defined below, for smooth densities
¢: - Randp: I' - R3:

sp:=7 (x> [ Exyonds).
Vaoi=. (x> [ Exynmas).
r
Kn(x):=y7 (X - Curlx/ E(x, y)n(y)dS/) ,
r
K*n(x):=x; (x - curlx/ E(X,y)n x r,(y)dsy) — (%),
r
Wh(x):=y T [x > curly (curlx/ E(X,y)n x r](y)dS),)] )
r

In the following theorem we summarize some fundamental tools concerning the properties of these
integral operators when mapping between Sobolev spaces.

THEOREM4.1 The linear mappings

StHTY2(r) — WYA(1), vV H A s HPA(D), KHTY2(dive; 1) - HTY2dives 1),

K*:H Y2 (curly; I') > H~Y2 curlp; Iy, W:H™Y2(curlyq; Iy » H™Y2 divpe; )

arebounded and satisfy the following properties:

e There existx1 > 0andaz > 0 such that

(b, Sp1jo.r > aallpl® 1o, Vb € HTVAI) 4.7)
and
(nNn)er > a2l vogy,.py Y1 €HY2(dive0;T). (4.8)
e TheoperatoWV is related taS through the following identity:

(WA, ). = —(curlry, Stcurlr A1 r VA, ne H Y2 curlp; 1) (4.9)

e TheoperatoK* is the transpose &, i.e.,
Ky, &) er = (0, K*E)er VpeHY2divr0; 1) vE e H Y2 (curlp; 1). (4.10)

Proof. See theorems 6.1, 6.2 and 6.3+Hiptmair (2002). O
Finally, we will need the following result proved in lemma 2.3fCamy & Stepharf1984).
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LEMMA 4.2 Fory € H=12 (div;; I') we have that

div (x»—>/FE(x, y)n(y)dSy) :/r E(x, y)divrn(y)dS, in L2(R3).

A coupled FEM-BEM formulation of3.9) is obtained by relating the mixed formulatiof.%)
of the interior problem with 4.6) through the transmission conditions & We begin by applying
¥ o ug*curl to (4.6) and using4.3) to obtain

curl 7 2 = pug*Wa Fu—K(eurlr 2). (4.11)

Next we take the tangential traae!™ of both sides of4.6) to derive

rfu==x] (x > curlx/ E(X,y)n x zu da,) — Vy(curlu) —grad, Sy;u
r

or equivalently
K*(ugtafu) — V(eurl  2) — ugtgrad, Sy;fu = 0.
Testing the previous equation withurl - #, # € H(l)/z(l“) yields

—(eurl g, V(eurl 1 A)e r + ug HK(CUr 1), m U), p =0 ¥y e HY/2(I).

Combining the last identity with4(5) and 4.11) we obtain a symmetric mixed FEM and BEM coupling
for our problem:

Findu e #, p € L2(0, T; M(Qq)) and. € L2(0, T; Hy/*(I")) such that

%[(u(t), V)s + b(v, p(t)] + (/fl curl u, curl v)g o

+/161<S(CUI’|F7ITU), curlrm V1o r + (Keurl p A(t), V)., r = (f (1), V)o,0,

—curl 7 g, V(eurl 1 A))e, r + ug H(K(eurl 7 ), U)o, =0, (4.12)
b(u(t),q) =0,
Ulo,(0) =0

forallve H(curl; Q), 5 € Hé/z(F) andq € M(Qy).

In the following for the theoretical analysis it will be convenient to eliminate the boundary variable
J from the previous formulation. To this end we introduce the opertorH=1/2(1") — Hé/Z(F)
characterized by

feurl 1z, Veurl p RE) er = (& x)rjor YV € HYA(D) V& e HTYA(D). (4.13)

It is straightforward to deduce from Corollag/1, Theoren¥.1 and the Lax—Milgram lemma th&
is well defined and bounded. Furthermore, the second equatighld)(may be equivalently written
A= yglR(curHK*nru). Consequently, (4.12) admits the following equivalent reduced form:
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Findu € #, p € L2(0, T; M(Qq)) suchthat
éhwaxwa+Mwpam+%u*cthmmeg+cwﬂo=GGLWQQ Vv e H(eurl; Q),

b(ut),a) =0 Vg e M(Qa),

ule.(0) =0,
(4.14)

wherec(-, -) : H(curl; Q) x H(curl; Q) — R is the bounded, symmetric and non-negative bilinear
form given by

c(u,v) := ugH(eurl r Scurlr + Keurl f Reurl7K*) @ ,u, 7, V), r Vu,ve H(curl; Q). (4.15)

5. Existence and uniqueness

From now on we assume th&ly satisfiesthe following topological assumption, which is necessary
to prove Lemméb.1 below: there exists a s¢bj, j = 1,..., J} of admissible cuts of2q suchthat
Uleaw,— C 2 andany connected component of

Qg = Q4\ (U]_10))

is simply connected. This assumption is satisfied for any geometry in practice.
We introduce the space

V(Qq) :={veH(curl; Qg) :y,v=00n2;b(v,q) =0Vq e M(Qq)}.

Notethat ass(x) = ¢ for all X € Qyq,

V(Qq) = {veH(curl; Qq) :divv=0inQq,y ,v=00n2X, yav=00nT7, (ypv,1)12 5 =0,
i=0,...,1}
REMARK 5.1 Let us clarify here that the shifted electric fididd hasbeen introduced in order to obtain

a variableu with a vanishing normal component @n This boundary condition plays a central role in
the proof of the following lemma that may be foundrernandes & Gilard{1997).

LEMMA 5.1 The embedding o¥/ (2g) into L2(24)2 is compact and/ — ||curl Vllo,oq iS @ Nnorm on
V (24) equialent to theH(curl; Q4)-norm.

With the aid of the last result the proofs of the next two lemmas are similar to the corresponding

ones from section 4 dkcevedoet al. (2009).

LEMMA 5.2 The linear mapping” : H(curl; Q¢) — V(Q) characterized, for amy, € H(curl; Q¢),
by (&ve) | @, = Vc and

ﬂal(curl EVe, curl Wyg oy + C(EVe, W) =0 VYwe V(Qq), (5.1)

with c(-, -) given by @.15) is well defined and bounded.
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LEMMA 5.3 The inner product itV (Q)

U, Vv = U,Vv), + (x"curl u, curl V)o,o + c(u, V) (5.2)
inducesa norm||-|lv(e) thatis equivalent to théd(curl; £) norm inV (). Moreover, the following
decomposition is orthogonal with respect to the inner pro@uely (o):

V(Q) = V(Qq) ® EH(curl; Q). (5.3)
Where\T(b/d) is the subspace of () obtained by extending zero the functionswbfQ) to the whole
domaing.

THEOREM5.1 Problem (4.14) has a unique solutian p) and

T T
max U1 o, + | IO Eaua) 8 < C [ IFOIF oo (5.4)
te[0,T] 0 0

for some constar® > 0. Moreover, if we defingd = ﬂalR(curIpK*n,u) then(u, 4, p) is the unique
solution of problem4.12).

Proof. The second equation ofi(14) means that € #p. Hence, we can apply the orthogonal de-
composition §.3) to write thatu = ug + &uc, with ug € L2(0,T; V(2q)) and&u. € &WL(0, T;
H(curl; 2¢))). Itis easy to show that the first componegtt) of this decomposition solves the elliptic
problem

ﬂal (curl ug(t), curl v)g o4 + c(Ua(t), V) = (F (), V)g o, VVeE V(Q0), (5.5)

for a.e.t. On the other handj. satisfieghe parabolic equation
d
a(uc(t), V) 4 (uLeurl Suc(t), curl Evyo o

+ c(Euc(t), &v) = (F(t), &EVv)o,e VYV e H(eurl; Qc), (5.6)

with the initial conditionuc(0) = 0. Now using that(., -) is hon-negative (seel(15)) we can proceed
exactly as inPAcevedoet al. (2009, Theorem 4.4) to prove the existence and uniquenagsasfdugy.

Notethat, foranyg € M (Qq), the extension by zero gfad g to the whole® belongs tdH(curl; Q).
Hence, we deduce that the bilinear fobf, -) satisfies the inf-sup condition

bz,q) _ _ blgradq,q)

Z =¢eoldl,0s VO € M(Qq) (5.7)
zerieurt; @) 1ZIHceur; @)~ 1 grad qllHceur; @) ¢

anda similar reasoning to the one presented\ievedoet al. (2009, Theorem 4.4) proves that there
exists a unique(t) € M(Qq) satisfying

b(v, p(t)) = (4(),v) W e H(curl; Q) (5.8)

forallt € [0, T], where? e €°([0, T], H(curl; QY) is given by

t t t
(G1),v) :=—(u),v), _/o (x"eurl u(s), curl V)o,@ ds—/O c(u(s),v)ds—|—/0 (f(s),V)o,o ds.
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We conclude thatu, p) solves &.14) by differentiating the last identity with respecttio the sense of
distributions.
The last assertion of the theorem follows directly from the definitioR.of a

LEMMA 5.4 The Lagrange multipliep of problem @.12) vanishes identically.

Proof. Testing the first equation oft(12) withgrad q yields

d
ab(grad a, p(t)) + (Keurl - A(t), grad - q) -, r = (f(t), gradq)g o, = 0,
wherethe last equality follows from the compatibility conditions (3.7). Moreover, ag-glig =

curl g-nin H=Y2(1") for all g € H(curl, Q) we have that

divp(Keurlp 1) = divpy;r (x — curlx/ EX,y)curl o /l(y)dsy)
r

= curl (curlx/ E(x, y)curlp/l(y)ds),) -n.
r

Usingthe propertycurl curl = — 4 + grad div together with Lemmd.2and the fact that — E(X, y)
solves the Laplace equation &' leadus to the identity

curl (curlx/ E(x, y)curl o i(y)dsy) = grad (/ E(x, y)divy curl p /l(y)dSy) =0 inQ,
r r
or equivalently,
divp(Keurl 1) =0. (5.9

Thismeans tha&b(grad g, p(t)) = 0forall g € M(Qg). Next takingt = 0 in (5.8) and using the fact
that¥(0) = 0 we deduce that— b(grad g, p(t)) vanishes identically in [OT] for all g € M(Qg). In
particulareo| p(t)|iQd = b(grad p(t), p(t)) = 0forallt € [0, T], and the result follows. d

REMARK 5.2 As a consequence 08(10) and 8.12),f (x, 0) := curl Hy — J(x, 0) = 0in Q4. Hence,
solving (5.5) at = 0 shows thatig(x, 0) = 0in 24 andthen the global initial condition

ux,00=0 inQ
holds true.

THEOREMDS.2 If (u, A, p) is the solution of problen4(12) then
y.(ugteurlu)y =curlp 2 inH™Y2(divp; 1), (5.10)
Proof. Testing the first equation o#(12) withv e C3°(24) andusing the previous lemma we obtain
curl(u "L curl u)|g, = flo,.
Testing again the first equation of (4.12) with a functiathat belongs to the space

H x (curl; Qq) := {v € H(curl; Qq4); y ,v=00n2}
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we obtain
. (upteurlu) = ug*Wa . u—Keurlp 2 inH Y2 (divp; ). (5.11)
Owingto (5.9) and 4.9) we deduce that
divr(y . (ug*curl u)) = 0. (5.12)

Thesecond equation of(12) implies thaV/ (curl 1 2)—ug K*z ;u € H=Y2 (curlr; I')Nker(curlr).
Thenthere existgy € HY/2(I") such that (cf. Theorem 5.1 &uffa et al.,2002)

V(curlf 1) — ,ualK*n'Tu =grad, ¢.

According to the definition oK* this equation may be written
T U=m, (x > curlx/ E(X,y)n x zru(y)dsy) — woV(curl A) + uograd ¢. (5.13)
r

Let us now consider the unique harmonic functiere W1(Q’) satisfyingthe boundary condition
w =gponl, andletz: Q' — R3begiven by

Z(X) = curlx/ E(X,y)n x w u(y)ds, — #o/ E(x,y)curl r A(y)dS, + pograd y. (5.14)
r r
We deduce fromH.13) and $.11) that
., z=m,u and ,ualy,curlz=,ualy,curl u. (5.15)

Moreover, 6.9) together with Lemma.2 show that diz = 0 in Q" andcurlcurlz = (—4 +
graddiv)z = 0 in Q’. Consequently, taking into account thmsatisfies adequate asymptotic condi-
tions at infinity this function is also given by the following integral representation:

zZ(X) = curlx/r E(X, y)n x = u(y)dS, _/r E(x, y)y . (curl u(y)ds, + gradx/lr E(X, y)ynzdS,.

Applying z ; to both sides of the previous equation yields

T, Z=1, (x - curlx/ E(X,y)n x n,u(y)dsy) —Vy . (curl u) + grad; S(ynz).
r
Next subtracting the last identity from (5.13) and usiBgl6) provides

V(uocurl 7 2 —y  (curl u)) = grad - (xop — S(yn2)).

Finally, taking the duality product of this equation withy curl 7 2 — y . (curl u) € H=Y/2 (div0; I")
(cf. (5.12)) and using4.7), gives

azlluwocurl p 2 =y (Curl WIZ 1oy, ry
< (uocurl 7 4 —y (curlu), V(uocurlp 2 —y (curl u))). r

= (uocurl o A — y . (curl u), grad - (uop — Synz))r,r =0

andthe result follows. O
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6. Analysis of the semidiscrete scheme
6.1 Well posedness

Let {%}n bea regular family of tetrahedral meshes @nsuch that each elemeHt € % is contained
eitherin Q. orin Q4. As usualh stands for the largest diameter of the tetrahddia .7,. Furthermore,
we denote by % (2)}n and{. (1)} the families of triangulations induced byZh}h on 2 and I,
respectrely. We assume thdt7,(2)}n is quasi-uniform. From now o€ denotes a positive constant
independent oh and that may take different values at different occurrences.

We define a semidiscrete version of (4.12) by meansagkEléc finite elements. The local representa-
tion of themth-order element of this family on a tetrahedidns given by 41 (K) = P?n_lea Sm, Where
Pm is the set of polynomials of degree not greater thaand Sy := {p € f@f’n © X - p(x) = 0}, with
Pm beingthe set of homogeneous polynomials of degmeelhe corresponding global spaée (2)
to approximateH(curl; Q) is the space of functions that are locally.iff,(K) and have continuous
tangential components across the faces of the triangul&ion

Xn(Q) :={veH(curl; Q): vk € /m(K)VK € T}.
On the other hand, we use standanth-order Lagrange finite elements to approximitéQq) and

Hy/2():

Mh(£4q) := [qul(Qd)3CIIK € Pm VK E%,/_QZO,QI& =G, | =0,---,|]
Qq

and

An(T) = {9 e HY(I') : 9|F € P VF € Zh(I)}.
We are now ready to introduce a semidiscretization of probked?y):
Findup(t) : [0, T] = Xn(Q), An(t) : [0, T] > An(L) andpn(t) : [0, T] = Mp(Lq) suchthat

%[(Uh(t), V) 4 b(v, pn(t))] + (z~Lcurl up, curl v)o o

+ugH(S(eurl @ cun), curlpm V)1, + (Keurl f An(t), V)., = (F (1), Vo,0,

—(curl 7, V(eurl p An))e,r + ug HK(eurl ), & Un)e,r =0, (6.1)
b(un(t), q) =0,
Unlo.(0)=0

forallve Xn(Q),n € An(I") andq € Mp(L2q).

REMARK 6.1 For piecewise smooth functions the boundary integral operato& 1y &re structurally
equal to those for second-order elliptic problems. The terms involving the op&atodV are im-
mediately written in terms of integrals. The same happens with the terms invidvihgfact, for any
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n € An(I") andv € Xn(Q), we have (Hiptmair2002)

JE(X.y)
an(x)

(Keurlp ”:”zv)r,F:/ / curl 7 n(y) - T V(X) ds, ds
rJr

+ / / grad, Ex, y)(curl 1 () - n(x) - 7 v()dS, dS
rJr

— }/ curl 7 y(X) - T, v(X)dS.
2J)r

We proceed as in the continuous case to prove existence and uniquenés$)fdnfleed, leR;, :
H=12(I"y - An(I") be the operator characterized by

{eurlr x,Veurl Raé))eor = (& x) 1o Yy € An(I) V& e HTYA(D). (6.2)

Note that (6.2) is a Galerkin discretization of the elliptic problehil8). Consequently, using Coro-
llary 2.1, we have the following &€ estimate:

IRE — Raéllijz,r <C inf IRE—pllior VEeHY2(I). (6.3)
nedn(I")

Here again using thaty, = /lath(CUHFK*ITUh) we deduce the following equivalent formulation of
(6.1):
Findup : [0, T] > Xp(Q) andpp, : [0, T] > Mp(L2g) suchthat

d
a[(uh(t)’v)a + b(v, pr(t)] + («~Lcurl up, curl V)g o + ch(Uh, V) = (F(1), V)o.o VYV e Xn(Q),

b(un(t),q) =0 Vg e Mn(Q4q), (6.4)
Unlo.(0) =0,

wherecp (-, -) : Xp(2) x Xp(Q) — R is the uniformly bounded and non-negative bilinear form given
by

ch(u, v) := ug((curl  Scurly + K eurl » Rocurl p K*)m U, V), - YU,V e Xn(Q).
Note that the discrete kernel
Vh(2) = {ve Xn(2) : b(v,q) =0Vq € Mh(24q)}
of the bilinear formb is not a subspace &f (). Let us also introduce the space
Vh(Qq) := {Vlgy : Ve Wh(2)} NH s (curl; Qq).

Thefollowing result is a variation of proposition 4.6 froAmroucheet al. (1998).

PROPOSITIONG.1 On the spacé/(2q) the seminormw +— ||curl wljp, o, iS equivalent to the usual
norm inH(curl; Qg).
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Proof. Let ¢, bean arbitrary function fronV (24). We consider the unique solutigne M (Qg) of
/ grad p-gradq :/ o -gradg VYqge M(Qy).
Qq Qq

Notethatv := @, — grad p € V(Qq). It is well known that the spacéso(curl; Qq) N H(div; Q4) and
H(curl; Q4) NHo(div; Qq) arecontinuously embedded ini#+9(24)2, for somes > 0 (seeAmrouche
et al., 1998, Proposition 3.7). Lal € C;°(L2) be such that6< v < 1andy = 1in Qc. Note that
v=yVv+ (1— y)vforanyv e V(Qy) with

wV € Ho(curl; Qg) NH(div; Q4) and (1 — w)v e H(curl; Qg) N Ho(div; Qg).
Hencey e H/219(Qq)2 andthere exist<; > 0 (depending only o4 and ) such that
IVIl1 /246,04 < CalIVIH(cur:; 2g)- (6.5)

Moreover, ascurl v = curl g, in Qq4, the Necelec interpolant#,v of v is well defined (cf.Amrouche
et al.,1998, Lemma 4.7). Actually there exisfs > 0independent of andh such that (cfAmrouche
et al., 1998, Proposition 4.6)

| #hVllo,oq < Ca(hllcurl @pllo,oq + IVII1/246,04)- (6.6)

Now following the strategy given iGirault & Raviart(1986, Chapter Ill, Proposition 5.10) we are
able to build apn, € Mh(Qg) suchthat.#,(grad p) = grad pn. Thus,¢,, = grad pn + #hv and

lonl? =/ on - (grad pn +«/hv)=/ oh - hV.
Qq Q4 Q4
Thenthe Cauchy—Schwarz inequality.6) and 6.5) yield

lonllo,oq < l-#hVllo, oy < Ca(hlicurl @pllo, o4 + CallVIIH(cur; 24))- (6.7)

Finally, using Lemméb.1 and the fact thaturl v = curl ¢, shav that there exist€ > 0 indepen-
dent ofh such that

llenllo,q < Clicurl gpllo, o

andthe result follows. O

From now on the proof of the well posedness@flj runs parallel to the one given in the continuous
case. First of all using Propositidhl and the fact that.7,(2)} is quasi-uniform, one can obtain the
following technical tool (cf. Lemmas 5.3 and 5.4A¢evedoet al.,2009, for more details).

LEMMA 6.1 The linear mappingh : Xn(2¢) — Vh(£L) characterized byéhve) |0, = Ve and
pg ™t (curl &hve, curl Wyg g, + Ch(GhVe, W) =0 YW e Vh(Q24) VVe € Xn(Qc) (6.8)
is well defined and bounded uniformly ln Furthermore, the inner product
(U, VIvp@) == (U, V), + ("L eurl u, curl v)g_g, + cn(u, v) (6.9)

inducesin Vi (2) a norm||-[lv,e) thatis equivalent to théd(curl; )-norm inVy(2). Moreover, the
decompositionV (2) = Vh(Q2q) ® &h(H(curl; Q)) is orthogonal with respect to the inner product

G5 IVh (@) where\/f(\Q/d) is the subspace 0¥,(£2) obtained by extending by zero the functions of
Vh(Qg) to the whole domain?.
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THEOREMG6.1 Problem 6.4) has a unique solutiday, pn). Moreover, ifi, 1= ygth(curHK*nruh)
then(un, 4n, pn) is the unique solution of problen® (1).

Proof. The orthogonal decomposition provided by the last lemma permits one to split the principal
variableuy, into two components. Each component is easily shown to be the unique solution of the
problem obtained by restricting (6.4) to the corresponding subspagg ©f) to obtain the semidiscrete
versions of §.5) and 6.6). See the proof of Theorem 5.5A¢evedoet al. (2009) for more details.

The existence and uniqueness of the Lagrange multipliés also obtained as in the aforementioned
paper. It is a direct consequence of the discrete inf-sup condition

bz.a) o (gradq, grad q)g_go,
2eXn. 5 (29) 1ZIH(cun; @g) - I grad qllH(curt; 24
thatfollows immediately from the fact thafrad(Mn (24)) C Xn, 5 (24). O

=¢oldl1,04 Y4 € Mnh(Qq) (6.10)

6.2 Error estimates
Consider the linear projection operat@p, : H(curl; 2) —» Vi (Q) defined by
IThv € Vh(Q) : (IThV, Dneur; @) = (V, DH(eur; @) VZ € Vh(£2). (6.11)

We deduce easily from6(10) the following @a estimate (cfGirault & Raviary 1986, Chapter Il,
Theorem 1.1):

IV—=IhViHeun, @) < Inf IV =Z[Hcun; 0) YV e V(Q). (6.12)
zeXn(Q)

We introduce the notations
a(v,w) == (u~eurlv,curl Wyo,g,  pr(t) == u(t) = IThu(t), Sn(t) := IThu(t) — un(t)

and
Brn(w) := (R = Rn)eurlpK*z Wll1/2, 7. (6.13)
Notethat as a consequence of Proposifiohand Lemmab.1we have that
IVIIHceur; @) = IV = &h(Vlg,) + Eh(Vle) IHcur; @) < C(lIVllo, o, + llcurl Vi, o) (6.14)
forall v e Vh (). In particular
0h (O IHccur; @) < CIdn M) llo, 0. + llcurl dn(Dllo,.@) VYt e[0, T]. (6.15)

Fromnow on||-||, denoteshe norm in 12(L2c, )3 correspondingpo the the inner produdt, ), defined
in (4.4).

LEMMA 6.2 Assume that the solution of (4.12) belongs to MO, T; H(curl; £)) then there exists a
constanC > 0 such that

]
SUP 116n(8) 12 cur o) + / 1én(9)112 ds
te[0,T] 0

;
sc[ / 1otpR I cur; 0ydt + SUp lleurl pr 115 o
0 te[0,T]

.
+ Sup]ﬂh(u(t))2+/0 ﬁh(atu(t))zdt] (6.16)

te[0,T
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Proof. A straightforward computation yields
(6t0n (1), V)o +a(dn(t), V) + Ca(dn(t), V) = = (Gt pn(t), V)s —alpn(t), v) — cn(pn(t), v)
+ [chu(t), v) — c(u(t), v)] (6.17)
for all v e Vh(2). Then it follows from (6.14) that
(atah(t)a V)a’ + a(ah(t)a V) + Ch (ah(t)n V)
< laepn® s IVIe + Callivilo, o + llcurl vio, o)l Ar () lIH(curi; @) + Aa(u(t))]
1 1
< SIvIE + 3, lour VI§ o + Calllaepn®UZ + lpn I cur: o) + BnU®)?].
Takingv = dn(t) in the last inequality and recalling that(-, -) is non-negative give
d
aIIJh(t)Ilff + Yicurl 5h(t)||o oS |5h(t)ll + C3[||8tph(t)|| + ||Ph(t)||H(cur| ot Bn(u(t))?].

We now integrate over [@] (we recall thatd, (0) = 0) and use Gronwall’'s inequality to obtain

t T
I8n ()12 + g7 /0 llcurl 8n(s)[13, ds < Ca /0 [12spn ()12 + 1120 (S) I cur: 0y + An(u(s))?]ds.

(6.18)
Analogouslytakingv = 6tdn(t) in (6.17) gives

ladn (12 + %a [Gn(1). Sn(t)) + Cn(Bn (1), Sn(D))]

d
= —(Gpn(t), on(t))s — a[a(/’h(t), on(t)) + cn(pn(t), on(t)] +a(apn(t), on(t))

d
+ ch (@t pn (D), on(1)) + a[ch(u(t), on(t)) — c(u(t), an(1))]

— [en(@tu(®), on(t)) — c(aru(t), on(1)].

Next integrating over [Qt] and using the Cauchy—Schwarz inequality aBd b) provide

t
/O 12s8n(9)I12 ds+ flcurl dn()1 o
t t T
<cs[||5h(t)n§+ /O 16n(9)I2 ds + /0 lcurl dn(9)11Z o, ds + /O 125pn(1E curt 0 4

+ sup |lcurl ph(S)IloQJr sup Bn(u(s))? +/ Pn(@su(s)) dS}
se[0,T] se[0,T
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Finally, using (6.18) we conclude that

t T
/Ollaséh(S)llﬁdsHIcurl dh(®)II5 o < Cs {/0 10sPn () 1 curt: @) dS+ s[gg]llcurl PhO5.0
se[0,

.
+ sup Bn(u(s)?+ /0 ﬁh(asu(s))2d5:|-

s€[0,T]

Theresult is now a direct consequence of the last inequafit}8) and 6.15). O

THEOREM 6.2 Let u andup bethe solutions of Problems (4.12) and (6.1), respectively. Assume that

u € HY(0, T; H(curl; 2)) and leten(t) := u(t) — up(t). There exist€ > 0 such that

T T
9B lon) a0 + /0 len (1 cun ) At + /0 leken ()12 dt
[0

T
<C inf_flou(t) — VIG cun: inf [|acA(t) — x 1|2, ldt
[/O [veXh(Q) llacu(t) ||H(curl,g)+xe/1h(r)|| tA(t) ){”1/2,1"]

+ sup |nf ||/1(t)—x||l/2r+ sup i ||u(t) VIdeu: oy f-  (6.19)
[OT]X T]Ve

Proof. Recall thati(t) = ygchurlpK*n,u(t). Hence, the regularity assumption nimplies that
1 e HYO, T; HY/2(I)

andogA(t) = ,ualRCUHFK*ﬂ.'TatU(t). It follows from (6.3) that

Pau®)) <C inf JIAE) = xlli2,r,  An(@u) <C inf [[6A(t) — xll1/2,r- (6.20)

xeAn(I) xeAn(l)
Furthermoresinced IThu(t) = Ih(Gu(t)) theresult follows by writingen(t) = pn(t) + dn(t) and
usingLemma6.2and (6.12). O
For anyr > O we consider the Sobolev space
H' (curl; Q) :={ve H(Q)%: curlve H (Q)3},

endaved with the norrr1|v||Hr(CurI Q" ||v||2 + |lcurl v||2Q whereQ is eitherQ; or Qq. It is well
known that the Mcelec mterpolaniﬁhv € Xh(Q) is well defined for anw € H" (curl, Q) withr > 1/2

(see/for instance Alonso Rodrguez & Valli, 1999, Lemma 5.1 oAmroucheet al., 1998, Lemma 4.7).

We fix now an index > 1/2 and introduce the space
= {ve H(curl; Q) :v|g, € H (curl; Qc) and v|g, € H (curl; Qq)} (6.21)
endaved with the broken norm

. 2 2 1/2
VI = (IVIEr curt: 20 + VI curt: 2g) "
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Thenthe Necelec interpolation operator}, : X — Xp(L2) is uniformly bounded and the following
interpolation error estimate holds true (d&mudezet al.,2002, Lemma 5.1 oAlonso Rodfguez &
Valli, 1999, Proposition 5.6):

IV = FVlkceur; ) < ChMMM vy vve X, (6.22)
LEMMA 6.3 Let (u, p, 1) be the solution 0f4.12). If we assume that

ueHY0,T;X) and g tcurlueHYO,T;X),

then

inf  [2(t) = xll1/2.r < Ch™M™ =2 curl u(t)||x (6.23)
xeAn(I)

and

inf  [leA(t) — xlli2.r < Ch™MM 5 (L eurl u())llx. (6.24)
x€An(I)

Proof. Let fhr bethe 2D Nécklec interpolant orZ;, (17). Using the commuting diagram property
;0 =fhro7tr
andrecalling thatcurl - 2 = y , («~* curl u) we obtain
. (In(u teurlv) = A, (u teurlu) = 47 (0 x y, (uLeurl u))
= (nx curlp 2) = A7 (grad ).
Thenwe can findy (t) € 4 (") such that (see the proof of Propositiéri for a similar argument)
¥ - (Fh(u " eurl u®))) = curl  x(t).
Now by virtue of Corollary2.1

inf [lA(t) — < Cp inf Jcurl f A(t) — curl _
xeAh(I")” ®) = xllj2,r 1)(e/lh(1“)” rAt) rxl-12.r

N

Calleurl  A(t) — y . Fh(u ™~ curl u®)ll-1/2,r
= Cilly . (la = Fh)(  eurl u®)|—1/2,r

< Call(la — Fh) (e~ eurl u®)) Inceur; )

and(6.23) follows by using the interpolation error estima@e?@).

1102 ‘2T Areniga4 uo i1sanb Aq 61o°sjeuinolpiojxoeufew woly papeojumod


http://imajna.oxfordjournals.org/

A MIXED FEM AND BEM COUPLING FOR AN EDDY CURRENT PROBLEM 250f 31

Finally, the regularity assumption om~1curl u allows us to writer . (%h(6; (1L curl u))) =
ﬂhf(gradr otA) and(6.24) follows by using the same arguments as above. O

The following convergence result is a direct consequence of The@2rhemmat.3and the inter-
polation error estimate (6.22).

COROLLARY 6.1 Letl := min{r, m}. Under the assumptions of Lemr6&8we have that

T T
sup. llen ()12 cur o) + / len (12 cur ot + / léken(t) 2 dt
te[0,T] 0 0

.
< Ch2|[ sup [lu®)I% + sup [lz"curl u(t)||§+/ lacu(t) 1% dt
te[0,T] te[0,T] 0

.
+/ llex(u~teurl u())|% dt].
0

REMARK 6.2 Let us recall that
At) = pgtRecurlrK*z ut)) and in(t) = g Ra(curl K*z ;un(t)).
Thereforeusing 6.20) and the uniform boundednessRyf, we obtain

pollA) = Zn®)ll1/2,r < Sa(ut)) + [IRncurlpK*z - (u — un) (®)ll1/2,r
<Cq inf At) — t o
[}(E!/lh([')” ( ) X”l/Z,F =+ llen( )”H(curI,Q)]

Consequentlyusing Lemma.3and Corollary6.1we have

]
/0 1A(t) = Zn)I2 5 1 dt < Ch2,

with | := min{r, m}.

7. Analysis of a fully discrete scheme
7.1 Well-posedness

We consider a uniform partitioft, := n4t : n = 0,..., N} of [0, T] with a step sizedt := % For
any finite sequenc®" : n =0,..., N} we denote

on — an—l

00" = ,
At

n=1,2,...,N.
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A fully discrete version of problen¥(12) reads as follows:
Forn=1,...,N,find (up, pfl, A7) € Xn(2) x Mh(Qq) x 4An(I") such that

@U, V)s + b(v,apR) +a(up, v) + ugH(S(eurlpa ul), curlrx V)12, r
+ (Keurlr 20, m V), r = (F(th), VI, YV e Xn(RQ),
_ 1/2
— (eurl p n, Veurl f AN, + ug MK (eurl p ), m U e p =0 Vi e Ho/ (),

b(up,q) =0 Vg e Mn(Qq),

udlo, =0,
po =0,
0
W0 =0

(7.1)
Writing the second equation of (7.1) a3 = yath(curIpK*n,uﬂ) we can reformulate the prob-
lem as follows:
Forn=1,...,N,find (up, p) € Xn(£2) x Mnh(LQq) suchthat

(ul, V), +b(v,opf) +aup,v)+ca(ul,v) = (f(tn),V)o,0 VVe Xn(Q),
b(up,a) = 0 Vqe Mn(Qq),
(7.2)
Wlo, = 0,
p. = 0.

Hence at each time step we have to fituf,, pf) € Xn(2) x Mh(2q) suchthat
(up, V)o + 4t[a(up, v) + cn(up, V] + b(v, pp) = Fn(v) Vv e Xn(Q),
b(up,d) =0 Vg e Mn(Qu),
where
Fn(v) := At(f (tn), V)o.o + (UN 2, V), + b(v, piY).

Our numerical scheme is then well defined since the existence and uniquer@fs joff) is a direct
consequence of the Batka—Brezzi theory. Indeed, the bilinear fobrsatisfies the discrete inf-sup
condition (6.10) and the bilinear form

(V, W) = (V, W), + At[av, w) + cn(v, w)]
is elliptic on its kerneM,(2) (cf. Lemma6.1).

REMARK 7.1 We point out that the problem that must be solved in practice is (7.1). Its reduced (and
equivalent) formulation (7.2) is only used here to simplify the analysis of the problem. It is prohibitive

to compute the matrix corresponding to the opera&gr(which is part of the definition oty (-, -)).
Problem(7.2) is then not feasible for numerical experiments unless a conjugate gradient type method is
used to solve the linear systems of equations. Indeed, in this case it is not necessary to store the matrix
corresponding tdr, sinceonly its action on a vector is needed at each iteration of the iterative method.
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7.2 Error estimates

LEMMA 7.1 Let p" = u(tn) — IThu(tn), 8" = Mhu(tn) — uf), t" := du(tn) — &u(tn) andlet gn be
definedas in 6.13). There exist€ > 0 independent dfi and At such that

n n
max 18 B cur; o) + 4t D 1687 < C [At D 18A" I curt: 0y + 17 Wccurt @) + An(@rut))?]
= k=1 k=1

Ky 2 )
max . max An(u(t . 73
+1<k<nllp ||H(curl,!2)+1<k<nﬂh( (tx)) ] (7.3)

Proof. It is straightforward to show that
(38%, )y +a(8*, v) + cn (8, v) = —(3p", V), —a(p*, V) + (r5,v),
— cn(p*, V) + en(u(te), v) — c(u(t), V) (7.4)

for anyv € Vh(Q). Choosingv = & in the last identity, recalling that(-, -) is non-negative and
uniformly bounded, and using the estimates

a(d*, 0" > utcurl 8413, and (0%, 8%, > Z—Zt(nékni — 16 112),
togethemith (cf. (6.15))
18I Hccurt; @) < ClIS ls + lleurl 8o,0], k=1,...,n, (7.5)
and the Cauchy—Schwarz inequality lead us to the following inequality:

184117 — 18% =112 + At w7 curl 8413

At _
<or 18X12 + C At[15p*112 + 1" IHceur: @) + 12517 + Bn(u(tk))?]. (7.6)

Next summing ovek in

1812 = 18* 7112 < S 18112 + C Atl19p*1Z + A" 1 cun: ) + 117417 + An(u(t)?]

At |
2T
andusing the discrete Gronwall's lemma (see, for instance, Lemma 1.4. Jt@rteroni & Valli 1994)
and the fact thad® = 0 yield

n
18712 < CAt D" (10p 12 + 110" cur @) + 1712 + Br(Ut))?), (7.7)
k=1
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forn=1,..., N. Inserting the last inequality ir¥(6) and summing oves we have the estimate

n
18712 + 4t >l curl 843
k=1

n n n n
<C4t (Z 13p%12 + D 1pM I cur. ) + D 17512 + Zﬁh(u(tk))2)~ (7.8)

k=1 k=1 k=1 k=1
Taking nowv = a6%in (7.4) produces the identity
138% (12 + a(d¥, 36%) + cn (8, 36%)
= —(0p*,30%)5 + (z¥,00%), +a(@p®, 8 1) + cn(@p®, 1) + c(z*, 81
1
= on(z*, 871 + c(ru(t), 871 — en(@ut), 7Y — — (= 1) (7.9)

with yx 1= a(pX, ) +cn(pX, 8 +c(u(ty), 8) —cn(u(tk), 85). On the other hand, &, -) andch (-, -)
arenon-negative, it is easy to check that

_ 1 - 1
a8, 00 > -—[a(@*, 89 —a@ ", & M) (@, 36" > S len(8, 8 — en(6*H, 8],
24t 24t
Usingthese inequalities together with the Cauchy—Schwarz inequali @) lead to
L1aaM12 + 2L [a@, 8% — a(@< 1, 8] + -1 [en(8¥, 8 — cn(@ 1, 8K
2 o 24t ’ ’ 2.4t ’ ’
< C(13pM12 + 17412) + a@p®, 67 + cr(@p%, 871 + c(z¥, 871 — en (%, o7

1
+ c(Bru(te), 1) — on(Gru(te), 1) — ](Vk — Pk=1)-

Thensumming ovek and recalling thaty (-, -) is non-negative we deduce that

18 1
= aok||2 curl 8"||2
5 k; 19817 + 5 leur 8715

n n
_ 1
< C1 D (13" + 12412) + D (Ork + Oax + 03 + —<ll. (7.10)
k=1 k=1

with 01 = [a(@p*, 81|, B2k := |cn(@p*, 8 Y|, O3k 1= [c(z¥, 87 — en(z¥, 81| andbax =
c(@u(tc), 31 — cn(@u(te), 8.
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It is easy to obtain from the Cauchy—Schwarz inequality and (7.5) the bounds

n n n
k—1,2 2. kj2
> 01k < D lleurl 8HIG o +C2 D llcurl 3pK113 o,
k=1 k=1 k=1

n n
> 02x < D [18HZ + lieurl 813 o + Calldp Iicur: o)
k=1 k=1

n n
> 03k < D MI8HZ + lleurl 87NIE o + Call eI cur, o))
k=1 k=1

n n
D> Oax < D182 + licurl 873 o + Cspn(@ru(t))?l,
k=1 k=1

1
lynl < 167117 + 2, our 8"1§.0 + Celllcurl p"II5 o + An(u(tn))].

Substitutingthe last inequalities in (7.10) and using&) we obtain

n n
At D 1168%)12 + [lcurl "3 5 < C7 I At 18P W curt: @) + 12" 1 cur: ) + 17 Wi curt: o)
k=1 k=1

+ Bn(u(ti)® + Bn(@ru(te)®] + llcurl p"[1§ o + ﬂh(U(tn))Z] :

Theestimate (7.3) follows directly from a combination of the last inequality witB and 7.5). O

THEOREM 7.1 Let u andup bethe solutions of problems}(12) and 7.1), respectively. Assume that

u e H2(0,T; X) andlete” := u(tn) — up. Then there exists a consta@t> 0, independent ofi and
At, such that

N

nn2 A 2

max (€1 cur o) + At D 15612
1<n<N ; =

<C!l max inf Julty) = VI[Z . max inf ||A(ty) — &|)2
< <1<n<NveXh(Q)” (th) ”H(Curl’g)+1<n<Ng’eAh(F)” (tn) 5”1/2,1"

N T
A inf lovi(ta) =z +/ inf  [16tu(t) = VI3 et o)) dt
Zﬁ’“h(ﬂ 002 = 1l + (it AU® = Vi, o)

T
+ (At)z/o ||5ttu(t)”|2-|(curl;Q) dt] :

Proof. The result is obtained by using.@0) and Lemmd.2 and proceeding as in theorem 6.2 of
Acevedoet al. (2009). a
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Notethat, because o5(4), the stability of our fully discrete scheme is also guaranteed by the last
estimate. Finally, with the aid of Lemnt3, Theoren¥.1 and the interpolation error estimat®. Z2)
we deduce the following asymptotic error estimate for our fully discrete scheme.

COROLLARY 7.1 Under the assumptions of Lemra&88and Theoren?.1we have that

N
max ||€" 13w At aek||2
\max 116" cur; o) + ;n 12

<cCh? | max [[uty)l2 + max ||z tcurl u(ty)|2
< <N” (n)||)<‘f‘l <N||ﬂ (tn) 1%

AL AL

T T
+ max [la(u teurl u)IZ + / ||atu<t)||§dt]+C(At)2 / e u(t))|2 dt,
1<n<N 0 0

with | ;== min{m, r}.

REMARK 7.2 As Al = ygth(curIpK*n,uﬂ), we can proceed as in Rema&kto obtain

n
At N1A(tn) = ARl12 5. < CID? + (41)7],
k=1

with | := min{r, m}.
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