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ANALYSIS OF THE
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POTENTIAL FORMULATION FOR THE EDDY
CURRENT PROBLEM IN A BOUNDED DOMAIN �

RAMIRO ACEVEDO � AND RODOLFO RODRÍGUEZ 
Abstract. The aim of this paper is to provide a mathematical analysis of the well-known �������������

potential formulation for the eddy current problem. The resulting variational problem is proved to be well posed and
error estimates are settled for a numerical method based on standard nodal finite elements.
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1. Introduction. The mathematical and numerical analysis of Maxwell’s equations has
experienced important developments in different areas of applied mathematics and engineer-
ing during the last thirty years. We refer the reader to the books by Bossavit [17], Monk [29]
and Silvester and Ferrari [32], as a representative sampling of text books devoted to numerical
solution of electromagnetic problems.

Among the numerical methods found in the literature to approximate Maxwell’s equa-
tions, the finite element method is the most extended. See for instance [13] for a survey on
this subject including a large list of references. Nowadays, it is the basis of several commer-
cial codes such us Ansys, Femlab, Flux, Magnet, MSC/Emas, Opera, etc. We refer the reader
to [33] for a description of most of these codes and further references.

The eddy current problem is obtained from Maxwell’s equations by assuming that all
fields are harmonic and the frequency is low enough as to neglect the electric displacement
in Ampère’s Law. Such a situation happens, for instance, in problems related to electric
machines working at power frequencies and in non-destructive materials testing.

In most practical situations, it is necessary to solve the electromagnetic problem in a
bounded domain which contains conducting and non-conducting material (dielectrics), the
equations in these two parts being typically of different kind. Moreover, the treatment of
multiply connected conductors or dielectrics in three-dimensional domains presents special
difficulties. The choice of the unknowns in each subdomain is a crucial point for analysis of
the problem in domains with a general topology.

An important number of formulations and finite element methods for solving the eddy
current problem in three-dimensional bounded domains can be found in the literature. There
is a group of papers devoted to solving the problem in terms of certain scalar and vector
potentials [1, 2, 14, 15, 26, 30, 31] and another group using formulations in terms of the
magnetic field [4, 6, 7, 9, 10, 12, 34] or the electric field [3, 11, 27].

A thorough mathematical analysis of the formulations in terms of the magnetic or the
electric field has been recently performed. This is not the case, however, for formulations in
terms of scalar and vector potentials. Indeed, in spite of the fact that the latter are the most
frequently used in applications, there are only a very small number of papers dealing with
their mathematical analysis. Among them, we mention a paper by Alonso et al. [5], where�
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the well-posedness of some of these formulations is analyzed, and another one by Bı́ró and
Valli [16] with the analysis of one such formulation in a general topological setting.

Different potentials have been used for the eddy current problem: a vector potential
�

for the magnetic field, a scalar potential
�

for the electric field in the conducting domain, a
scalar magnetic potential

	
in dielectric domains, etc. A hierarchy of formulations involving

these potentials has been discussed by Bı́ró and Preis [15]. In particular, they conclude that
the so-called

�����
� �!�"	
formulation, which involves all of them, is the most convenient in

terms of computer cost. Numerical experiments illustrating the performance of this approach
are also reported in this reference.

The aim of this paper is to provide a rigorous mathematical analysis of this formulation.
Under rather general topological conditions, we prove that it leads to a well-posed problem,
which can be numerically approximated by standard nodal finite elements. We also prove
error estimates for the resulting numerical method. These estimates are valid as long as the
three potentials are sufficiently smooth.

The smoothness of the scalar potentials
�

and
	

only relies on that of the original phys-
ical variables of the problem: the magnetic and the electric fields. However, the smoothness
of the vector potential

�
also depends on the geometry of the domain chosen to define this

non-physical variable. In principle this domain can be chosen freely, as far as it contains the
conductors and the source currents. However, when it is chosen so that its connected com-
ponents are either convex polyhedra or simply connected domains with smooth boundaries,
the smoothness of

�
is mainly determined by the regularity of another physical variable: the

magnetic induction field.
Because of this, we make such a choice for the domain of

�
, which is not restrictive in

practice. However, it is convenient to choose it as small as possible, because the magnetic
field is written in terms of the more economical scalar potential

	
outside this domain. Thus,

in the applications, the domain of
�

typically consists of a union of disjoint boxes, as small
as possible, containing the current source and the conductors.

The outline of the paper is as follows: We introduce the eddy current problem and discuss
the topological setting in Section 2. The

�����#�$�%��	
potential formulation is introduced

in Section 3. The corresponding variational problem is obtained in Section 4, where we
also prove its well-posedness. Finally, in Section 5, we prove error estimates for a standard
finite element method to solve the problem numerically. We also discuss in this section
the convenience of choosing a domain with convex connected components for the vector
potential.

2. Eddy current problem. We consider a standard eddy current problem: to determine
the electromagnetic fields induced in a three-dimensional conducting domain &(' by a given
source current density )+* . We assume that the support of ),* is compact and disjoint with &-' .
The eddy current problem is in principle posed in the whole space. However, we restrict it to
a bounded domain & containing both, &.' and the support of )+* , such that adequate boundary
conditions can be imposed on its boundary. To this aim, we choose the geometry of & as
simple as possible (e.g., simply connected with a connected boundary). See Fig. 2.1 for a
two-dimensional sketch.

Let &/'10�243 be an open and bounded set with boundary 56' . Let &#07243 be a simply
connected bounded domain with a connected boundary 5 , such that &8'�09& . We suppose
that both, & and &-' , are either Lipschitz polyhedra or domains with :4;=< ; boundaries. We
denote by > and >.' the outward unit normal vectors to & and &.' , respectively, and by&@?BADCE&GF &/' the subdomain of & occupied by dielectric material, which includes the
support of the source current; see Fig. 2.1. We will use standard notation for Sobolev spaces
and norms.
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FIG. 2.1. Two-dimensional sketch of the domain.

The eddy current problem reads as follows:

Find PRQ�S�TVUXWZY\[^]�&-'Z_ and `aQ�S$TbUXWZY\[^]�&-_ such that:UcWdY\[X`eCgf,P in &/' �(2.1) h�ikj `ml�UcWdY\[XPnCGo in &/' �(2.2) UXWZYp[c`qCg)r* in &@? �(2.3) sutwv T j `7_kCyx in & �(2.4) `az{>gCG| * on 5~}(2.5)

The unknowns P and ` are the magnetic and electric fields, respectively. The magnetic
permeability

j
and the conductivity f are bounded functions satisfying:x�� j ��� �"� j � j ���M� in & �x��!f ��� ��� f � f ���M� in &/'k}

Let us remark that the magnetic field has to satisfy the following coupling conditions:`9� ����z{>-'�Cy`�� �O��z�>/' on 5X' �T j `G_�� � � ��> ' C#T j `7_�� � ����> ' on 5 ' }
In fact, the latter is a consequence of (2.4), whereas the former follows from the fact that `
must belong to S�TVUXWZYp[M]�&-_ .

The data of the problem are the source current density ) * Q��~�cTV&-_�3 , for which we
assume K�L�NON )�*"0g&@? and

sut�v )�*�Cyx in &@? �
and the tangential trace of the magnetic field | * . Precise assumptions on | * will be made
in Section 4 below; they essentially mean that | * has to be the tangential trace of a curl-free
vector field (recall that UXWZYp[6` vanishes in the neighborhood of 5 ).

Equations (2.1)–(2.5) are enough to determine P and ` only if the topology of the
conducting domain &-' is trivial. Otherwise, additional constraints must be imposed. To do
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this, we reduce our analysis to domains satisfying a standard topological assumption; see for
instance Amrouche et al. [8]. We assume that there exists � ? connected open surfaces �.�
(so called “cuts”) contained in &/? , such that:

(i) each surface �-� is an open part of a smooth manifold,
(ii) the boundary of each �-� is contained in 5 ' ,

(iii) the intersection �/��� �k� is empty for

h8�C$  ,
(iv) the open set ¡&@?$ADCG&@?�F-¢ � � � is pseudo-Lipschitz and simply connected.

Under this assumption, since 5 is connected, the space of harmonic fields£�¤ Tb5 � 5J'd_/ADC¦¥J§�Q�� � T�&@?k_ 3 A¨UXWZYp[J§�CGo in &@? � sut�v T j §Z_kC�x in &@? �§
z{>gC�o on 5 and
j §���>-'�C�x on 5J'~©

satisfies
sOtwª £�¤ Tb5 � 5J'Z_~C1��? ; see, for instance Fernandez and Gilardi [24, Proposition 5.6].

A basis for this space is given by «¬�Y\®O¯±° �X²�³ ��M´ ; , where each ° � QµS ;¶ TV&@?¦F±� � _ is the
solution of the following elliptic problem:

[[ °d� ]] ·�¸-C#¹ �º �O��» · ¸ j ¬�Y\®O¯�°d�-��¬�Yp®�¯½¼¾C�x ¿r¼
Q�S ;¶ TV& ? _À}
In the expression above [[ � ]] ·�¸ denotes the jump across �~� . Here and thereafter the subscript5 in S ;¶ T�� _ refers to function in S ; T^�Á_ with a vanishing trace on 5 .

Notice that although in principle ¬�Y\®O¯"°Z��Q��~�JT�& ? F/�k�_ , the last equation implies thatj ¬�Y\®O¯±°,� is a divergence-free function in the whole & ? (not only in & ? F¨�k� ). Moreover,
since the jump [[ °Z� ]] ·O¸ is constant, ¬�Y\®O¯±°d� has also a vanishing UXWZYp[ in the whole & ? (and
not only in & ? F-�k� , again). Thus, ¬�Y\®O¯�°Z��Q £ ¤ TV5 � 5 ' _ .

To determine a unique solution of the eddy current problem (2.1)–(2.5), it is enough to
add the following constraints (see Alonso et al. [5]):

(2.6)
º �O� h�ikj `Â�¬�Y\®O¯±° � l º ¶ � TVPRz�>-'d_4��¬�Y\®O¯"° � C�x �  "CÃ¹ � }�}�} � �{?/}

Let us remark that the second integral above has a weak sense for PÄQ�S�TVUXWZY\[^]�& ' _ and¬�Y\®O¯±°d��Q�S�TVUXWZYp[�]�& ? _ , as was shown by Buffa and Ciarlet [18, 19] for Lipschitz polyhedra
and by Buffa et al. [20] for arbitrary Lipschitz domains; see Section 4 below for a precise
definition.

3. The
�����7���n�
	

potential formulation. In this section we recall a classical for-
mulation of the eddy current problem in terms of three potentials,

�
,
�

and
	

, which was
introduced by Leonard and Rodger [28]. We refer to Bı́ró and Preis [15] for a detailed dis-
cussion, which includes numerical tests showing the efficiency of this approach.

First, we introduce a magnetic vector potential
�

defined in a subdomain &8Å of & , which
contains the conducting domain and the support of the source current. This subdomain does
not need to be connected, but each of its connected components will be chosen either convex
or simply connected with a smooth boundary. The reason for such a choice will be discussed
in Section 5 below. On the other hand, for the sake of discretization, it is convenient to choose
a polyhedral domain & Å ; moreover, outside & Å , we will use a scalar potential, which will
consequently require much less degrees of freedom for its discretization. Because of this,& Å will be chosen as small as possible, but with convex polyhedral connected components
containing &-' and KMLONON )�* ; see Fig. 3.1.
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FIG. 3.1. Two-dimensional sketch of the domains for the different potentials.

Let & Å 0¦243 be an open set satisfying

(3.1) & 'ÊÉ K�LON�N ) * 01&/Å and &/Å¦0!&¨}
We denote by & � Å ,  �Cn¹ � }�}�} � � Å , the connected components of & Å . We assume that each& � Å is either a convex polyhedron or a simply connected domain with a : ;=< ; boundary, and
that & � Å are mutually disjoint. We denote by 5 Å the boundary of & Å and by > Å its outward
unit normal vector; see Fig. 3.1.

As a consequence of [25, Theorem I.3.5.], equation (2.4) implies that there exist unique� � Q�S�TbUcWdY\[�]�& � Å _ such that j `ËC�UXWZYp[ � � in & � Å �(3.2) sutwv � � C�x in & � Å �(3.3) � �-��>-Å
C�x on Ì+& � Å }(3.4)

Thus, if we define
� AÍ& Å ��ÎÐÏ

by� � � ¸ Ñ AÁC � � �  ±CÃ¹ � }�}�} � ��Å �
then

�
belongs to the space Ò ADCgS"ÓÍT sut�v ]�&/Å�_,��S�TVUXWZY\[^]�&/Å�_ �

whose natural norm isÔÕ�Ô=Ö AÁCR× Ô�Õ�Ô �Ó < � Ñ l Ô sOtwv Õ�Ô �Ó < � Ñ l Ô UcWdY\[ Õ�Ô �Ó < � Ñ+Ø8ÙÚ }
Next, according to Bı́ró and Preis [15] (see also Bı́ró [14] and Bı́ró and Valli [16]) we

introduce an electric scalar potential
� Q�S ; T�&/'d_ , such that

(3.5) PnC � h�i �9� h�i ¬�Y\®O¯ � in & ' }
Let us remark that (2.6) is a necessary condition for a global potential

�
to exist; see [5] and

the formal argument at the end of this section. Notice that, from (2.1),sut�v T � h�i f ��� h�i f�¬�Y\®O¯ � _kC�x in &/'k}
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Moreover, since `ÛQ�S�TbUcWdY\[M]�&-_ , (2.1) and (2.3) also imply thatT h�i f � l h�i f(¬�Y\®O¯ � _4��>-'�Cgx on 5X'k}
These last two equations will be also collected in the potential formulation.

Equation (3.5) determines the electric potential
�

on each connected component of &8'
up to an additive constant. Thus, if &.' has ��' connected components & � ' , then the natural
space for

�
is Ü ADC ³ �Ý�M´ ; S ; TV& � ' _�Þ Ï@�

endowed with the norm
Ô ¬�Y\®O¯ � Ô Ó < � � .

Finally, a magnetic scalar potential
	

is defined in& È ADC�&�F & Å
(see Fig. 3.1). To do this, notice that since & Å is a disjoint union of convex sets with & Å 0g&
and & is simply connected, it turns out that & È is simply connected too. Therefore, from
(2.3) and (3.1) we know that there exists

	 Q1S ; TV& È _ (unique up to an additive constant)
such that `qC i ¬�Y\®O¯ 	 in &/È4}

Thus, we are lead to the following formulation of problem (2.1)–(2.6) in terms of the
potentials

� Q Ò ,
� Q Ü and

	 Q�S ; TV&/È,_�Þ Ï :UXWZY\[kß ¹j UXWZY\[ �Êà l h�i f � l h�i f�¬�Y\®O¯ � C�o in & ' �(3.6) sutwv T � hVi f ��� h�i f�¬�Y\®O¯ � _kC�x in & ' �(3.7) UXWZY\[kß ¹j UXWZY\[ ��à Cy) * in &/Å�F & ' �(3.8) ß ¹j UXWZY\[ � àÊáááá ��� z{>-' � ß ¹j UXWZY\[ � àÊáááá � Ñ » ��� z�>.'�C�o on 5J' �(3.9) sut�v T j ¬�Y\®O¯ 	 _kC�x in & È �(3.10) sOtwv � C�x in & Å �(3.11) � �À> Å C�x on 5 Å �(3.12) i ¬�Yp®�¯ 	 z�>1C�| * on 5 �(3.13) ¹j UcWdY\[ � ��> Å � i ¬�Y\®O¯ 	 �À> Å C�x on 5 Å �(3.14) ¹j UcWdY\[ � z{>-Å � i ¬�Y\®O¯ 	 z�>/Å�C�o on 5JÅ �(3.15) T h�i f � l h�i f(¬�Y\®O¯ � _4��> ' C�x on 5 ' }(3.16)

Let us remark that (3.9) and (3.15) are consequences of the fact that ` QâS$TbUXWZY\[^]�&-_ ,
whereas (3.14) follows from the fact that

j `aQ�S$T sut�v ]�&-_ , which in its turn is a consequence
of (2.4)



ETNA
Kent State University 
etna@mcs.kent.edu

276 R. ACEVEDO AND R. RODRIGUEZ

To end this section we show that any solution of the above equations yields a solution of
the eddy current problem (2.1)–(2.6). In fact, let T �����~��	 _@Q Ò z Ü z.S ; TV&/È,_�Þ Ï satisfying
(3.6)–(3.16). Let

(3.17) `aAÁCÛãä å ¹j UXWZY\[ � in & Å �i ¬�Y\®O¯ 	 in & È �
and P be defined by (3.5). It is immediate to show that `ÛQ�S�TbUcWdY\[M]�&-_ , PRQ�S$TbUXWZY\[�]�&-'d_ ,
and they satisfy (2.1)–(2.5). There only remains to prove that (2.6) also holds true. To do this,
notice that (2.4) implies that there exists a vector potential æBQ�S�TbUcWdY\[�]�&-_ such that

(3.18)
j `qCgUcWdY\[Xæ in &¨}

Taking into account that the sets & � Å are simply connected and mutually disjoint, from
(3.17) there follows that there exists ç�Q�S�;\T�&/Å4_ such that� C�æ%l$¬�Y\®O¯±ç in &/Å@}
Consequently, if we define è� ADC � l�ç�� ��� , we obtain from (3.5) that

(3.19) PnC � h�i TVæ%l$¬�Y\®O¯ è� _ in &/'�}
Equations (3.18) and (3.19) fall in the framework analyzed by Alonso et al. [5, Sec-

tion 6 (ii)], where it is shown that (2.6) holds true. This can be formally verified by using
(3.17), the fact that ¬�Y\®O¯�°Z��Q £ ¤ Tb5 � 5 ' _ and (3.19), as follows:º � � h�ikj `Â��¬�Y\®O¯"° � C º � � h�i UcWdY\[XæR��¬�Y\®O¯"° �C hVi º ¶ � TVæéz�>-'d_4�¬�Y\®O¯±° �C � º ¶ � T�Pêz{>-'d_���¬�Yp®�¯�° � � h�i º ¶ � Tb¬�Yp®�¯�è� z�>-'Z_ë��¬�Y\®O¯�° �C � º ¶ � T�Pêz{>-'d_���¬�Yp®�¯�° � �
where for the last equality we have used thatº ¶ � TV¬�Y\®O¯ è� z�>/'ë_ë��¬�Y\®O¯�° � C º �O� ¬�Y\®O¯ è� � ��UXWZY\[OTb¬�Y\®O¯�° � _� º ��� UcWdY\[MTb¬�Yp®�¯ è� � _4��¬�Y\®O¯"° � C�x �
with è� �¨Q�S ; TV&-_ being an extension of è� to the whole & .

4. Variational formulation. Existence and uniqueness of solution. The aim of this
section is to give a variational formulation of problem (3.6)–(3.16) and to prove its well-
posedness.

First, we recall some results settled in [20] for Lipschitz domains. We write these results
for & Å , as will be used in the sequel. The tangential trace operator ì�í�Tbîï_ÊADCâî¨� ¶ Ñ z¾> Å
is a bounded linear operator from S�TVUXWZY\[^]�& Å _ onto S�ð ÙÚ T sut�v ¶ ]�5 Å _ . The tangential pro-
jection ñ�í�Tò§d_±ADC�> Å z$Tb§ï� ¶ Ñ z�> Å _ is a bounded linear operator from S$TbUXWZY\[^]�& Å _ onto
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well defined byö ìÍíOTbî@_ � ñ�í�Tò§Z_M÷ ¶ Ñ ADC º � Ñ UcWdY\[\î��À§ � º � Ñ î���UXWZY\[\§ ¿�î � §
Q�S$TbUXWZY\[^]�& Å _À}
For any øEQ¦S�TVUXWZYp[M]�&-È,_ , its tangential trace on 5XÅ also belongs to S�ð ÙÚ T sut�v ¶ ]M5JÅ�_ and,
consequently,

ö øùz�> Å � ñ�í�Tb§Z_�÷ ¶ Ñ is also well defined.
To obtain a variational formulation of problem (3.6)–(3.16), notice that by virtue of (3.6),

(3.8) and (3.9) we have that ;¤ UcWdY\[ � Q�S�TVUXWZYp[�]�& Å _ , and for all
Õ Q Òº � Ñ UcWdY\[ ß ¹j UcWdY\[ � à �.úÕ C � h�i º � � f T � l$¬�Y\®O¯ � _ë�.úÕ l º � Ñ )r*��-úÕ }

Integrating by parts the left-hand side above and using (3.11) and (3.15), there followsº � Ñ ¹j�û UXWZY\[ � ��UcWdY\[�úÕ l�T sut�v � _�ü sut�v úÕ�ý=þ l h�i º ��� f � �.úÕ(4.1) l h�i º ��� f�¬�Y\®O¯ � �.úÕ � i ö ¬�Yp®�¯ 	 z�>-Å � ñ í T Õ _�÷ ¶ Ñ C º � Ñ ) * �.úÕ }
On the other hand, from (3.7), by integrating by parts and using (3.16) we have for allÿ Q�S¾;JTV& ' _

(4.2)

h�i º � � f � ��¬�Y\®O¯��ÿ l h�i º � � f¨¬�Y\®O¯ � ��¬�Y\®O¯��ÿ Cyx�}
Finally, for any °gQ�S ;¶ T�& È _ , from (3.10), by integrating by parts and using (3.14), we

obtain i º � � j ¬�Y\®O¯ 	 �¬�Y\®O¯ �°�l º ¶ Ñ UcWdY\[ � ��> Å �°�Cyx �
where the last integral must be understood as the duality pairing between S¦ð ÙÚ TV5 Å _ andS ÙÚ TV5JÅ�_ . Now, let °k�¨Q�S ; TV&-_ be an extension of ° to the whole & . Hence,º ¶ Ñ UXWZYp[ � ��> Å �°
C º � Ñ UcWdY\[ � �¬�Y\®O¯ �° � C � ¬�Y\®O¯ �°¦z�> Å � ñ�í�T~ú� _�� ¶ Ñ }
Therefore, we obtain

(4.3)
i º � � j ¬�Yp®�¯ 	 ��¬�Y\®O¯ �°�l � ¬�Y\®O¯ �°$z�> Å � ñ�í�Tkú� _ � ¶ Ñ Cgx�}

Equations (4.1)–(4.3) together with the essential condition (3.13), provide the following
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variational formulation of problem (3.6)–(3.16):

Find
� Q Ò ,

� Q Ü and
	 Q�S ; TV&/È,_�Þ Ï such that:i ¬�Y\®O¯ 	 z{>gCG| * in S ð ÙÚ T sut�v ¶ ]M5ë_ �(4.4) º � Ñ ¹j�û UXWZY\[ � ��UcWdY\[�úÕ l�T sut�v � _�ü sut�v úÕ�ý=þ l h�i º ��� f � �.úÕ(4.5) l h�i º ��� f¨¬�Y\®O¯ � � úÕ � i ö ¬�Y\®O¯ 	 z�>.Å � ñ í T Õ _M÷ ¶ Ñ C º � Ñ ) * � úÕ¿ Õ Q Ò �hVi º ��� f � ��¬�Y\®O¯��ÿ l h�i º ��� f�¬�Y\®O¯ � ��¬�Yp®�¯��ÿ Cyx ¿ ÿ Q Ü �(4.6) i º � � j ¬�Y\®O¯ 	 �¬�Y\®O¯ �°�l � ¬�Y\®O¯ �°�z�> Å � ñ�íOT~ú� _�� ¶ Ñ Cyx ¿+°�Q�S ;¶ T�& È _=}(4.7)

Our next goal is to prove that this variational problem has a unique solution. For this
purpose, first of all notice that (4.4) can be satisfied only if | * is the tangential trace on 5
of a gradient. Thus, this additional hypothesis turns out necessary for the problem to have a
solution. So, we make the following assumption:

(4.8) �
	�Q�S ; T�&/È,_@A | * Cy¬�Y\®O¯�	�z�> in S ð ÙÚ T sut�v ¶ ]M5ë_=}
Now, let � be the bilinear form defined on

Ò z Ü z�S ; TV&/Èd_�Þ Ï by�#T�T �����k�M	 _ � T Õ � ÿ � °4_M_AÁC º � Ñ ¹j û UcWdY\[ � ��UXWZYp[�úÕ l�T sOtwv � _kü sut�v úÕ�ý=þ l i � º � � j ¬�Y\®O¯ 	 ��¬�Y\®O¯ �°l h�i º ��� f�T � l$¬�Yp®�¯ � _�� ü úÕ l$¬�Y\®O¯��ÿ ý� i ö ¬�Y\®O¯ 	 z{>-Å � ñ í T Õ _�÷ ¶ Ñ l i � ¬�Y\®O¯ �°$z�>-Å � ñ í T~ú� _ � ¶ Ñ }
Clearly, (4.4)–(4.7) can be equivalently written as follows:

Find T �����k�M	 _/Q Ò z Ü z�S ; T�&/È,_MÞ Ï such that:i ¬�Yp®�¯ 	 z�>1C�| * in S ð ÙÚ T sutwv ¶ ]M5Z_ �(4.9) �µT�T �����~��	 _ � T Õ � ÿ � °�_�_kC º � Ñ ) * �-úÕ ¿4T� � ÿ � °�_@Q Ò z Ü z�S ;¶ T�&/È,_=}(4.10)

THEOREM 4.1. Under assumption (4.8), the variational problem (4.9)–(4.10) has a
unique solution.

Proof. It is enough to show that � is elliptic, since, in such a case, the theorem follows
from Lax-Milgram’s Lemma.
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To prove the ellipticity, for T Õ � ÿ � °�_@Q Ò z Ü z�S ; TV&/È,_MÞ Ï we write�#TMT Õ � ÿ � °�_ � T Õ � ÿ � °4_M_kC º � Ñ ¹j × � UcWdY\[ Õ � � lG� sOtwv Õ � � Ø l i � º � � j � ¬�Yp®�¯�°-� �l h�i�� º � � f × � Õ � � lG� ¬�Y\®O¯ ÿ � � Ø l�� º � � f����cTV¬�Y\®O¯ ÿ �-úÕ _l���� ª � ¬�Y\®O¯ �°$z{>.Å � ñ í TdúÕ _ � ¶ Ñ�� }
Thus, � �µT�T Õ � ÿ � °4_ � T Õ � ÿ � °�_�_�� � CµT���l i ��� _ � l i � T �kl!�#"6_ � �
where �ÊADC º � Ñ ¹j × � UcWdY\[ Õ � � lG� sOtwv Õ � � Ø � � AÁC º � � j � ¬�Y\®O¯±°-� � ��¨ADC º ��� f × � Õ � � l�� ¬�Y\®O¯ ÿ � � Ø � " ADC�$/l!% �
with$½ADC º ��� f&�'�cTb¬�Y\®O¯ ÿ �8úÕ _ and %�ADC(� ª � ¬�Yp®�¯ �°¦z{>-Å � ñ í T+úÕ _ � ¶ Ñ }
Next, we proceed as in [16] and use the elementary inequalityT��~l��)"Í_ ��*,+ � � �.- + " � ¿/� � " Q�2 � ¿ + Q�Tbx � ¹pÞ#�10 �
to obtain� �µT�T Õ � ÿ � °4_ � T Õ � ÿ � °�_�_�� � * � � l i32 �=� l i � T + � � �.- + " � _ ¿ + Q�Tbx � ¹pÞ#�10 }

Now, since1

� * 4j ���M� Ô�Õ�Ô �Ö and � * j ��� � Ô ¬�Yp®�¯�° Ô �Ó < � � �
with 465 x independent of

Õ
, we have� �#TMT Õ � ÿ � °�_ � T Õ � ÿ � °4_M_�� � * 4 �j ����M� Ô�Õ�Ô 2 Ö l i 2 j ���� � Ô ¬�Y\®O¯"° Ô 2Ó < � �l i � + ß º ��� fÊ� ¬�Y\®O¯ ÿ � � à � � ¹87 i � + T�$ � l!% � _=}

To estimate the last term in the right-hand side above, notice first that, for all 9 5 x ,$ � � ß º ��� áá f�¬�Y\®O¯ ÿ �-úÕ áá à � � 9 � ß º ��� f�� ¬�Yp®�¯ ÿ � � à � l ¹�:9 ß º ��� f � Õ � � à � }
1For the first inequality, see, for instance, [25, Lemma I.3.6].
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On the other hand, �<; 5 x independent of ° and
Õ

such that% � � Ô ¬�Y\®O¯ �°$z�> Å Ô �='> ÙÚ@? * � ACB)D ¶ Ñ<E1FF ñ�í�TdúÕ _ FF �= > ÙÚ<?HGJILK�M B D ¶ Ñ E � ;Ã× Ô ¬�Y\®O¯"° Ô 2Ó < � � l Ô�Õ�Ô 2 Ö Ø }
Therefore, by combining the last three inequalities and taking 9 and + small enough, we
obtain that �ON 5 x such that, ¿4T Õ � ÿ � °�_@Q Ò z Ü z�S ; T�& È _MÞ Ï ,� �#T�T Õ � ÿ � °�_ � T Õ � ÿ � °�_�_�� � * N × ÔÕ�Ô 2 Ö l Ô ¬�Y\®O¯ ÿ Ô 2Ó < � � l Ô ¬�Y\®O¯"° Ô 2Ó < È Ø �
which allows us to conclude the ellipticity of � .

To end this section, we prove that the unique solution of the variational problem (4.9)–
(4.10) is actually a solution of the strong form of the problem given by equations (3.6)–(3.16).

THEOREM 4.2. The solution T �����~��	 _ of (4.9)–(4.10) satisfies (3.6)–(3.16).
Proof. First, let ç�Q�S ; TV&/Å�_ be a solution of the compatible Neumann problem P±çÊCsut�v �

in &/Å , Ì�çcÞ\Ì�>-Å�CBx on 5JÅ . By testing (4.5) with
Õ CB¬�Y\®O¯�çgQ Ò , we obtain

(3.11) by using (4.6) (since ç�� ����Q Ü ) and
ö ¬�Y\®O¯ 	 z�> Å � ñ�í�Tb¬�Yp®�¯½çX_�÷ ¶ Ñ CGx (which is a

consequence of the definition of the duality pairing).
Second, by testing (4.5)–(4.7) with smooth functions supported in adequate domains and

proceeding in the standard way, it is easy to verify equations (3.6)–(3.10), (3.14) and (3.16).
Since (3.12) is imposed in the definition of the space

Ò
and (3.13) coincides with (4.9), there

only remains to prove (3.15) in S�ð ÙÚ T sutwv ¶ ]M5 Å _ ; namely, that for all Q�Q�S�TbUcWdY\[^]�& Å _ ,
(4.11) R ¹j UcWdY\[ � z{> Å � ñ�í�T�Q�_CS ¶ Ñ � ö ¬�Yp®�¯ 	 z�> Å � ñ�í�T�Q�_M÷ ¶ Ñ C�xO}

To do this, notice first that by substituting (3.11) in (4.5), integrating by parts and having
into account (3.6) and (3.8), we obtainR ¹j UcWdY\[ � z{> Å � ñ�íOT Õ _ S ¶ Ñ � ö ¬�Y\®O¯ 	 z{> Å � ñ�í�T Õ _�÷ ¶ Ñ Cgx ¿ Õ Q Ò }
Next, for Q�Q�S�TVUXWZY\[^]�& Å _ , let ° be a solution of the following auxiliary problem:°¦Q�S ; T�& Å _�Þ Ï A º � Ñ ¬�Yp®�¯�°¾��¬�Yp®�¯ �¼¾C º � Ñ Q �¬�Y\®O¯ �¼ ¿r¼�Q�S ; TV& Å _�Þ Ï }
Hence,

sut�v T Q � ¬�Y\®O¯"°�_ÊCùx in & Å and T Q � ¬�Y\®O¯±°�_-�X> Å Cùx on 5 Å . Consequently,Õ AÁCTQ � ¬�Y\®O¯±°�Q Ò , and using it as a test function in the equation above, we obtainR ¹j UcWdY\[ � z�> Å � ñ�í�T�Q � ¬�Yp®�¯�°�_ S ¶ Ñ � ö ¬�Yp®�¯ 	 z�> Å � ñ�í�T�Q � ¬�Y\®O¯±°�_�÷ ¶ Ñ Cyx�}
Now, from (3.6) and (3.8), we haveR ¹j UXWZY\[ � z�> Å � ñ�í�TV¬�Y\®O¯±°�_ S ¶ Ñ C º � Ñ UXWZY\[ ß ¹j UXWZY\[ � à ��¬�Y\®O¯ �°C � º ��� T hVi f � l h�i f¨¬�Y\®O¯ � _4�¬�Y\®O¯ �°l º � Ñ ) * ��¬�Y\®O¯ �°Cyx �
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where, for the last step, we have used integration by parts, (3.7), (3.16), the assumption that) * is divergence-free and (3.1).
Thus, using again that

ö ¬�Y\®O¯ 	 z�> Å � ñ�í�Tb¬�Yp®�¯�°�_�÷ ¶ Ñ vanishes, (4.11) follows from the
last two equations, and we conclude the proof.

5. Numerical approximation. In this section we describe and analyze a finite element
method to approximate the solution of problem (4.9)–(4.10). To do this, first notice that (4.9)
implies that the surface gradient of

	
can be written as follows:U ¶ 	 AÁCy>�z
T U 	 z{>._kC ¹i >Gz�| * }

Therefore, if we take an arbitrary but fixed point V Ó Q�5 and if the data | * is sufficiently
smooth (for instance, it is enough that | * Q�S ÙÚ1WYX Tb5Z_ 3 with Z 5 x ), then we can compute in
advance the values of

	
on 5 as follows:	 T Vk_~C ºO[ ?H\ E U ¶ 	 �8] [ ?^\ E C ¹i ºO[ ?^\ E >Gz�| * �L] [ ?H\ E �

where _"T�Vk_ is any simple curve lying on 5 and joining V Ó with V , and ] [ ?H\ E
is its unit tangent

vector. Notice that the computed value of
	 T�Vk_ is independent of the particular curve _"T�Vk_ .

Thus, if we define

(5.1) ` * T�Vk_@ADC ¹i º
[ ?H\ E >�z�| * �L] [ ?H\ E �
then problem (4.9)–(4.10) is equivalent to the following one:

Find T �����k�M	 _@Q Ò z Ü z�S ; T�& È _ such that:	 C�`J* on 5 �(5.2) �#TMT �����k�M	 _ � T Õ � ÿ � °�_�_kC º � Ñ )r*��.úÕ ¿�Ta � ÿ � °�_@Q Ò z Ü z�S ;¶ TV& È _À}(5.3)

To obtain a discrete formulation of this problem, we further assume that all the domains
are Lipschitz polyhedra. Let «�bdc ² be a family of tetrahedral meshes of & such that, for each
mesh, all the elements e�Qfb@c are completely included in one of the three subdomains &8Å ,& ' or &/È .

Consider the following finite element spaces:Ò c ADC ¥ Õ c Q Ò A Õ c � g�Qih 3³ ¿jeGQib c A)eG0 & Å © �Ü
c�ADC ¥ ÿ c Q Ü A ÿ c�� g Qih ³ ¿keGQib<c�A)e70 & 'ï© �l c ADC$¥c° c Q�S ; T�& È _@A(° c � g�Qmh ³ ¿ke�Qib c A)e�0 & È © �l ¶ < c�ADC�«p°nc�Q l c�A¨°�c�� ¶ Cyx ² �

where h ³ , � * ¹ , is the set of polynomials of degree not greater than � .
For the boundary condition, we choose the following discrete approximation of ` * :

(5.4) `J* < c ADC�o ¶ c `J* �
where o ¶ c is the Lagrange interpolant on the triangular mesh on 5 which consists of the
faces of tetrahedra of eRQ(b c lying on 5 , that we denote b ¶c . Notice that the definition of
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completely determined by its values at the vertices of the triangulation b ¶c , which can be
conveniently computed from the data | * by means of (5.1), with _±T Vk_ being a curve formed
by edges of b ¶c .

Thus, we are lead to the following discrete problem:

Find T � c ��� c ��	 c _@Q Ò c z Ü c z l c such that:	 c C(`J* < c on 5 �(5.5) �ÃT�T � c ��� c �M	 c _ � T Õ c � ÿ c � ° c _M_kC º � Ñ )�*��.úÕ c(5.6) ¿�T Õ c � ÿ c � °nc6_/Q Ò c�z Ü cÊz l ¶ < cO}
The existence and uniqueness of the solution of this discrete problem is again an im-

mediate consequence of the ellipticity of � , proved in the proof of Theorem 4.2, and Lax-
Milgram’s Lemma. Moreover, if the solution of the continuous problem is smooth enough,
the standard finite element error analysis techniques yield the following result:

THEOREM 5.1. Let `X*±Q�:kTb5ë_ and `J* < c be defined by (5.4). Let T �����~��	 _ and T � c ��� c ��	 c _
be the solutions of problems (5.2)–(5.3) and (5.5)–(5.6), respectively.

If
� Q¾S ; Wqp TV& Å _^3 , � Q�S ; Wrp TV&/'d_ and

	 Q¾S ; Wqp TV& È _ with s 5 x , then there exists
a strictly positive constant ; , independent of t ,

�
,
�

and
	

, such thatÔ ����� c ÔÀÖ l Ô ¬�Y\®O¯�T ����� c _ Ô Ó < ��� l Ô ¬�Yp®�¯�T 	��¾	 c _ Ô Ó < � �� ;utdv(× Ô � Ô ; Wqp < � Ñ l Ô � Ô ; Wqp < ��� l Ô 	 Ô ; Wrp < � � Ø �
with w±ADC ª�tyx «�� � s ² .

Proof. Let o c be the Lagrange interpolant on z c . SinceT o{c 	 _,� ¶ C�o ¶ c 	 C�o ¶ c ` * C,` * < c½C 	 c�� ¶ �
we have that

	 c � o&c 	 Q|z ¶ < c . Therefore, the theorem is a direct consequence of the
ellipticity of � , Cea’s lemma and the approximation properties of the Lagrange interpolant;
see, for instance, Ciarlet [21].

To end the paper we discuss the convenience of choosing the domain & Å of the vector
potential so that its connected components be convex polyhedra. For simplicity, we take& Å connected in what follows, but all the statements hold true for each of its connected
components. So let & Å be simply connected with a connected boundary.

According to [25, Theorem I.3.4], since
sOtwv T j `�_¨C9x in & , there exists } Q�S ; TV&-_^3

satisfying: UXWZY\[~}µC j ` in & �sutwv }9Cgx in &¨}
Moreover, according to Remark I.3.12 of the same reference, if

j ` Q�S��OTV&-_^3 with x��f� �¹ , then }�Q�S ; W �OTV&-_�3 .
Therefore, by virtue of (3.2)–(3.4), there holds:UXWZY\[MT ��� }�_~C�o in & Å �sut�v T ��� }"_kCyx in & Å �T ��� }"_4�À> Å C � }7��> Å on 5 Å }
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The first equation above and the simple-connectedness of &8Å implies that there exists a
unique ¼�Q�S ; T�&/Å4_�Þ Ï such that

�#� }µCg¬�Y\®O¯±¼ in &/Å , whereas the remaining equations
imply that ¼ is the solution of the following compatible Neumann problem:P�¼�Cgx in &/Å �Ì�¼Ì�> Å C � }7��> Å on 5 Å }

The Neumann data of this problem will be in general smooth on each polygonal face �
of 5XÅ , since 5XÅ is an arbitrary polyhedral surface within the dielectric domain. In fact, ifj ` Q�S��OTV&-_^3 with x±�f� � ¹ , then }�� �
�À>.Å$Q�S ÙÚ8W �OT��½_ for all faces � .

Therefore, if &-Å is a convex polyhedron, then there exists � 5 x such that ¼�Q�S
� Wq� TV&/Åk_ ;
see [23]. Consequently, � C�}�l$¬�Y\®O¯�¼�Q�S ; Wqp TV&/Å�_ 3 �
with s�ADC ª�t^x «�� � � ² 5 x . Conversely, if &-Å were a non-convex polyhedron, then, in general,¼�ÞQ�S��XTV&/Åk_ and, consequently,� C�}�l$¬�Yp®�¯�¼�ÞQ�S ; T�&/Å�_ 3 }
In such a case, Theorem 5.1 would become meaningless.

Moreover, � AÁC ¥ Õ Q�S ; TV&/Å�_�3�A Õ ��>-Å
C�x on 5JÅ © is a closed subspace of

Ò
; see

[22]. When &/Å is a polyhedron, it is well-known that � C Ò if and only if &8Å is convex;
see [25, Theorem I.3.9] and [22].

The finite element space

Ò c is clearly a subspace of � . Therefore, when &.Å is a convex
polyhedron, it makes sense to approximate

� Q Ò by finite elements from

Ò c .
Instead, if & Å were not convex, then there would be no hope of approximating

�
by

finite elements from

Ò c . Indeed, as stated above, in general
� ÞQ�S ; T�& Å _^3 in such a case.

Hence,
�

would not belong to the closed set � containing the finite element spaces

Ò c for
all meshes. So, there could not exist

� c such that
Ô ����� c Ô�Ö Î x as t goes to zero.

6. Conclusions. We have proved that the
�������Ê�1��	

formulation of the eddy current
problem is well posed and that its discretization by standard nodal finite elements leads to an
optimal-order numerical approximation. This gives mathematical support to the well-known
efficiency of this approach in applications.

However, for the convergence of the numerical method, the connected components of
the domain of the vector potential

�
must be chosen as convex polyhedra. Since this domain

can be chosen freely (as far as it contains the conductors and the source current), this is not a
severe restriction in practice.
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